These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17029387)

  • 1. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-.
    Lu J; Fang ZZ; Sohn HY
    Inorg Chem; 2006 Oct; 45(21):8749-54. PubMed ID: 17029387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrogenation of a combined LiAlH4/LiNH2 system.
    Lu J; Fang ZZ
    J Phys Chem B; 2005 Nov; 109(44):20830-4. PubMed ID: 16853700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics.
    Kim KC; Kulkarni AD; Johnson JK; Sholl DS
    Phys Chem Chem Phys; 2011 Apr; 13(15):7218-29. PubMed ID: 21409194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate.
    Ljubić I; Clary DC
    Phys Chem Chem Phys; 2010 Apr; 12(16):4012-23. PubMed ID: 20379493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-release mechanisms in lithium amidoboranes.
    Kim DY; Singh NJ; Lee HM; Kim KS
    Chemistry; 2009; 15(22):5598-604. PubMed ID: 19370741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.
    Alapati SV; Karl Johnson J; Sholl DS
    Phys Chem Chem Phys; 2007 Mar; 9(12):1438-52. PubMed ID: 17356751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of KH on enhancing the dehydrogenation properties of the Li-N-H system and its catalytic mechanism.
    Dong BX; Wang L; Ge J; Ping C; Teng YL; Li ZW
    Phys Chem Chem Phys; 2018 Apr; 20(16):11116-11122. PubMed ID: 29623311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.
    Yang J; Sudik A; Wolverton C; Siegel DJ
    Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.
    Wu H
    Chemphyschem; 2008 Oct; 9(15):2157-62. PubMed ID: 18821548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approaches to hydrogen storage.
    Graetz J
    Chem Soc Rev; 2009 Jan; 38(1):73-82. PubMed ID: 19088966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2008 Nov; 130(44):14834-9. PubMed ID: 18847204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction paths between LiNH2 and LiH with effects of nitrides.
    Aguey-Zinsou KF; Yao J; Guo ZX
    J Phys Chem B; 2007 Nov; 111(43):12531-6. PubMed ID: 17927242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The long-term hydriding and dehydriding stability of the nanoscale LiNH2+LiH hydrogen storage system.
    Osborn W; Markmaitree T; Shaw LL
    Nanotechnology; 2009 May; 20(20):204028. PubMed ID: 19420676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.
    Alapati SV; Johnson JK; Sholl DS
    J Phys Chem B; 2006 May; 110(17):8769-76. PubMed ID: 16640434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light metal hydrides and complex hydrides for hydrogen storage.
    Schüth F; Bogdanović B; Felderhoff M
    Chem Commun (Camb); 2004 Oct; (20):2249-58. PubMed ID: 15489969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.
    Weidenthaler C; Pommerin A; Felderhoff M; Sun W; Wolverton C; Bogdanović B; Schüth F
    J Am Chem Soc; 2009 Nov; 131(46):16735-43. PubMed ID: 19886669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of amine-borane adducts as potential hydrogen storage materials with reversible hydrogen uptake.
    Staubitz A; Besora M; Harvey JN; Manners I
    Inorg Chem; 2008 Jul; 47(13):5910-8. PubMed ID: 18500797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides.
    Li Y; Fang F; Song Y; Li Y; Sun D; Zheng S; Bendersky LA; Zhang Q; Ouyang L; Zhu M
    Dalton Trans; 2013 Feb; 42(5):1810-9. PubMed ID: 23165760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A first-principles study of the electronic structure and stability of a lithium aluminum hydride for hydrogen storage.
    Song Y; Singh R; Guo ZX
    J Phys Chem B; 2006 Apr; 110(13):6906-10. PubMed ID: 16571001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.