These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 17029436)
1. Inelastic scattering from glyoxal: collision kinematics rather than the interaction potential dominates rotational channel selection. Clegg SM; Parmenter CS J Chem Phys; 2006 Oct; 125(13):133110. PubMed ID: 17029436 [TBL] [Abstract][Full Text] [Related]
2. The effect of kinematic parameters on inelastic scattering of glyoxal. Duca MD J Chem Phys; 2004 Oct; 121(14):6750-8. PubMed ID: 15473731 [TBL] [Abstract][Full Text] [Related]
3. The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics. McCaffery AJ; Osborne MA; Marsh RJ; Lawrance WD; Waclawik ER J Chem Phys; 2004 Jul; 121(1):169-80. PubMed ID: 15260535 [TBL] [Abstract][Full Text] [Related]
4. Factors controlling the competition among rotational and vibrational energy transfer channels in glyoxal. Parmenter CS; Clegg SM; Krajnovich DJ; Lu S Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8387-92. PubMed ID: 11038560 [TBL] [Abstract][Full Text] [Related]
5. Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Pi(1/2)) with He. de Lange MJ; Stolte S; Taatjes CA; Kłos J; Groenenboom GC; van der Avoird A J Chem Phys; 2004 Dec; 121(23):11691-701. PubMed ID: 15634135 [TBL] [Abstract][Full Text] [Related]
7. Quenching of rotationally excited CO by collisions with H2. Yang B; Stancil PC; Balakrishnan N; Forrey RC J Chem Phys; 2006 Mar; 124(10):104304. PubMed ID: 16542076 [TBL] [Abstract][Full Text] [Related]
8. Rotational dependence of the proton-transfer reaction HBr+ + CO2-->HOCO+ + Br. I. Energy versus angular momentum effects. Paetow L; Unger F; Beichel W; Frenking G; Weitzel KM J Chem Phys; 2010 May; 132(17):174305. PubMed ID: 20459167 [TBL] [Abstract][Full Text] [Related]
9. State-to-state differential and relative integral cross sections for rotationally inelastic scattering of H2O by hydrogen. Yang CH; Sarma G; Parker DH; ter Meulen JJ; Wiesenfeld L J Chem Phys; 2011 May; 134(20):204308. PubMed ID: 21639441 [TBL] [Abstract][Full Text] [Related]
10. Rotationally inelastic collisions of SO(X3Sigma-) with H2: potential energy surface and rate coefficients for excitation by para-H2 at low temperature. Lique F; Senent ML; Spielfiedel A; Feautrier N J Chem Phys; 2007 Apr; 126(16):164312. PubMed ID: 17477607 [TBL] [Abstract][Full Text] [Related]
11. Quantum dynamics of rovibrational transitions in H2-H2 collisions: internal energy and rotational angular momentum conservation effects. Fonseca dos Santos S; Balakrishnan N; Lepp S; Quéméner G; Forrey RC; Hinde RJ; Stancil PC J Chem Phys; 2011 Jun; 134(21):214303. PubMed ID: 21663358 [TBL] [Abstract][Full Text] [Related]
12. State-to-state resolved differential cross sections for rotationally inelastic scattering of ND3 with He. Tkáč O; Saha AK; Onvlee J; Yang CH; Sarma G; Bishwakarma CK; van de Meerakker SY; van der Avoird A; Parker DH; Orr-Ewing AJ Phys Chem Chem Phys; 2014 Jan; 16(2):477-88. PubMed ID: 24084665 [TBL] [Abstract][Full Text] [Related]
13. Measurements and quasi-quantum modeling of the steric asymmetry and parity propensities in state-to-state rotationally inelastic scattering of NO (2Pi1/2) with D2. Taatjes CA; Gijsbertsen A; de Lange MJ; Stolte S J Phys Chem A; 2007 Aug; 111(31):7631-9. PubMed ID: 17542569 [TBL] [Abstract][Full Text] [Related]
14. Differential cross sections for rotational excitation of ND3 by Ne. Kay JJ; van de Meerakker SY; Wade EA; Strecker KE; Chandler DW J Phys Chem A; 2009 Dec; 113(52):14800-6. PubMed ID: 19694449 [TBL] [Abstract][Full Text] [Related]
15. Imaging the inelastic scattering of water with helium. Comparison of experiment and theory. Yang CH; Sarma G; Ter Meulen JJ; Parker DH; Buck U; Wiesenfeld L J Phys Chem A; 2010 Sep; 114(36):9886-92. PubMed ID: 20825242 [TBL] [Abstract][Full Text] [Related]
16. Close-coupling study of rotational energy transfer and differential scattering in H2O collisions with He atoms. Yang B; Stancil PC J Chem Phys; 2007 Apr; 126(15):154306. PubMed ID: 17461625 [TBL] [Abstract][Full Text] [Related]
17. Collisions of noble gases with supercooled sulfuric acid-water solutions. Behr P; Scharfenort U; Zellner R Phys Chem Chem Phys; 2009 Sep; 11(33):7292-302. PubMed ID: 19672541 [TBL] [Abstract][Full Text] [Related]
18. Frequency modulated spectroscopy as a probe of molecular collision dynamics. Alagappan A; Costen ML; McKendrick KG Spectrochim Acta A Mol Biomol Spectrosc; 2006 Apr; 63(5):910-22. PubMed ID: 16495130 [TBL] [Abstract][Full Text] [Related]
19. Rotational alignment effects in NO(X) + Ar inelastic collisions: a theoretical study. Brouard M; Chadwick H; Eyles CJ; Hornung B; Nichols B; Aoiz FJ; Jambrina PG; Stolte S; de Miranda MP J Chem Phys; 2013 Mar; 138(10):104309. PubMed ID: 23514491 [TBL] [Abstract][Full Text] [Related]
20. Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2. Tkáč O; Ma Q; Rusher CA; Greaves SJ; Orr-Ewing AJ; Dagdigian PJ J Chem Phys; 2014 May; 140(20):204318. PubMed ID: 24880291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]