These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
578 related articles for article (PubMed ID: 17029441)
1. The effects of collision energy, vibrational mode, and vibrational angular momentum on energy transfer and dissociation in NO2+-rare gas collisions: an experimental and trajectory study. Liu J; Uselman BW; Boyle JM; Anderson SL J Chem Phys; 2006 Oct; 125(13):133115. PubMed ID: 17029441 [TBL] [Abstract][Full Text] [Related]
2. State-selective preparation of NO2+ and the effects of NO2+ vibrational mode on charge transfer with NO. Uselman B; Liu J; Boyle J; Anderson S J Phys Chem A; 2006 Feb; 110(4):1278-87. PubMed ID: 16435788 [TBL] [Abstract][Full Text] [Related]
3. Effects of bending and bending angular momentum on reaction of NO2+ with C2H2: a quasi-classical trajectory study. Boyle JM; Liu J; Anderson SL J Phys Chem A; 2009 Apr; 113(16):3911-21. PubMed ID: 19182967 [TBL] [Abstract][Full Text] [Related]
4. Threshold collision-induced dissociation of diatomic molecules: a case study of the energetics and dynamics of O2- collisions with Ar and Xe. Ahu Akin F; Ree J; Ervin KM; Kyu Shin H J Chem Phys; 2005 Aug; 123(6):64308. PubMed ID: 16122309 [TBL] [Abstract][Full Text] [Related]
5. H+ versus D+) transfer from HOD+ to N2: mode- and bond-selective effects. Bell DM; Boyle JM; Anderson SL J Chem Phys; 2011 Jul; 135(4):044305. PubMed ID: 21806117 [TBL] [Abstract][Full Text] [Related]
6. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence. Liu CL; Hsu HC; Hsu YC; Ni CK J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751 [TBL] [Abstract][Full Text] [Related]
7. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton. Liu CL; Hsu HC; Lyu JJ; Ni CK J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864 [TBL] [Abstract][Full Text] [Related]
8. The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics. McCaffery AJ; Osborne MA; Marsh RJ; Lawrance WD; Waclawik ER J Chem Phys; 2004 Jul; 121(1):169-80. PubMed ID: 15260535 [TBL] [Abstract][Full Text] [Related]
9. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects. Liu CL; Hsu HC; Hsu YC; Ni CK J Chem Phys; 2008 Mar; 128(12):124320. PubMed ID: 18376932 [TBL] [Abstract][Full Text] [Related]
10. Collision-induced nonadiabatic transitions in the second-tier ion-pair states of iodine molecule: experimental and theoretical study of the I2(f0g+) collisions with rare gas atoms. Akopyan ME; Novikova IY; Poretsky SA; Pravilov AM; Smolin AG; Tscherbul TV; Buchachenko AA J Chem Phys; 2005 May; 122(20):204318. PubMed ID: 15945735 [TBL] [Abstract][Full Text] [Related]
11. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon. Liu CL; Hsu HC; Lyu JJ; Ni CK J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702 [TBL] [Abstract][Full Text] [Related]
12. Vibrational effects on the reaction of NO(2)(+) with C(2)H(2): effects of bending and bending angular momentum. Boyle JM; Uselman BW; Liu J; Anderson SL J Chem Phys; 2008 Mar; 128(11):114304. PubMed ID: 18361568 [TBL] [Abstract][Full Text] [Related]
13. Reaction of HOD+ with NO2: effects of OD and OH stretching, bending, and collision energy on reactions on the singlet and triplet potential surfaces. Boyle JM; Bell DM; Anderson SL; Viggiano AA J Phys Chem A; 2011 Feb; 115(7):1172-85. PubMed ID: 21291191 [TBL] [Abstract][Full Text] [Related]
14. Quasiclassical trajectory study of energy transfer and collision-induced dissociation in hyperthermal Ar + CH4 and Ar + CF4 collisions. Troya D J Phys Chem A; 2005 Jul; 109(26):5814-24. PubMed ID: 16833915 [TBL] [Abstract][Full Text] [Related]
15. The origin of the large bending enhancement of the reaction of C(2)H(2)(+) with methane: the effects of bending momentum, ruling out the precursor mechanism, and steps toward "Polanyi rules" for polyatomic reactions. Liu J; Anderson SL Phys Chem Chem Phys; 2009 Oct; 11(39):8721-32. PubMed ID: 20449015 [TBL] [Abstract][Full Text] [Related]
16. Quasiclassical trajectory study of the collision-induced dissociation of CH3SH+ + Ar. Martínez-Núñez E; Vázquez SA; Marques JM J Chem Phys; 2004 Aug; 121(6):2571-7. PubMed ID: 15281855 [TBL] [Abstract][Full Text] [Related]
17. Trajectory dynamics study of collision-induced dissociation of the Ar + CH4 reaction at hyperthermal conditions: vibrational excitation and isotope substitution. Marques JM; Martínez-Núñez E; Vazquez SA J Phys Chem A; 2006 Jun; 110(22):7113-21. PubMed ID: 16737261 [TBL] [Abstract][Full Text] [Related]
18. Vibrational mode and collision energy effects on reaction of H2CO+ with CO2. Liu J; Uselman BW; Van Devener B; Anderson SL Phys Chem Chem Phys; 2006 Oct; 8(39):4575-84. PubMed ID: 17047755 [TBL] [Abstract][Full Text] [Related]
19. Reaction of C2H2(+) (n · ν2, m · ν5) with NO2: reaction on the singlet and triplet surfaces. Boyle JM; Bell DM; Anderson SL J Chem Phys; 2011 Jan; 134(3):034313. PubMed ID: 21261359 [TBL] [Abstract][Full Text] [Related]
20. Quasi-classical trajectory calculations analyzing the reactivity and dynamics of asymmetric stretch mode excitations of methane in the H + CH4 reaction. Rangel C; Corchado JC; Espinosa-García J J Phys Chem A; 2006 Sep; 110(35):10375-83. PubMed ID: 16942042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]