BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17029746)

  • 1. Coexistence of multiple propagating wave-fronts in a regulated enzyme reaction model: link with birhythmicity and multi-threshold excitability.
    Pérez-Iratxeta C; Halloy J; Morán F; Martiel JL; Goldbeter A
    Biophys Chem; 1998 Sep; 74(3):197-207. PubMed ID: 17029746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitability with multiple thresholds. A new mode of dynamic behavior analyzed in a regulated biochemical system.
    Moran F; Goldbeter A
    Biophys Chem; 1985 Nov; 23(1-2):71-7. PubMed ID: 4092084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations.
    Goldbeter A; Moran F
    Eur Biophys J; 1988; 15(5):277-87. PubMed ID: 3366094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system.
    Decroly O; Goldbeter A
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6917-21. PubMed ID: 6960354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onset of birhythmicity in a regulated biochemical system.
    Morán F; Goldbeter A
    Biophys Chem; 1984 Aug; 20(1-2):149-56. PubMed ID: 6237691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coexistence of multiple periodic and chaotic regimes in biochemical oscillations with phase shifts.
    de la Fuente IM; Martinez L; Aguirregabiria JM; Veguillas J
    Acta Biotheor; 1998 Mar; 46(1):37-51. PubMed ID: 9558751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifront regime of a piecewise-linear FitzHugh-Nagumo model with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2019 Jun; 99(6-1):062214. PubMed ID: 31330591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding complex oscillatory phenomena in biochemical systems. An empirical approach.
    Goldbeter A; Decroly O; Li Y; Martiel JL; Moran F
    Biophys Chem; 1988 Feb; 29(1-2):211-7. PubMed ID: 2833948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From simple to complex oscillatory behavior in metabolic and genetic control networks.
    Goldbeter A; Gonze D; Houart G; Leloup JC; Halloy J; Dupont G
    Chaos; 2001 Mar; 11(1):247-260. PubMed ID: 12779458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory isozymes as the simplest model for coupled biochemical oscillators.
    Li Y; Goldbeter A
    J Theor Biol; 1989 May; 138(2):149-74. PubMed ID: 2607769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal self-organization in biochemical systems: periodic behavior vs. chaos.
    Goldbeter A; Decroly O
    Am J Physiol; 1983 Oct; 245(4):R478-83. PubMed ID: 6312816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction-diffusion fronts and the butterfly set.
    Cisternas J; Rohe K; Wehner S
    Chaos; 2020 Nov; 30(11):113138. PubMed ID: 33261332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in drosophila.
    Leloup JC; Goldbeter A
    J Theor Biol; 1999 Jun; 198(3):445-59. PubMed ID: 10366496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of temporal self-organized behaviors in a biochemical system.
    De la Fuente IM
    Biosystems; 1999 May; 50(2):83-97. PubMed ID: 10367973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Front interaction induces excitable behavior.
    Parra-Rivas P; Matías MA; Colet P; Gelens L; Walgraef D; Gomila D
    Phys Rev E; 2017 Feb; 95(2-1):020201. PubMed ID: 28297869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convection induced by thermal gradients on thin reaction fronts.
    Ruelas Paredes DRA; Vasquez DA
    Phys Rev E; 2017 Sep; 96(3-1):033116. PubMed ID: 29346926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear waves in a quintic FitzHugh-Nagumo model with cross diffusion: Fronts, pulses, and wave trains.
    Zemskov EP; Tsyganov MA; Kassner K; Horsthemke W
    Chaos; 2021 Mar; 31(3):033141. PubMed ID: 33810726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinning propagation of diffusionally unstable planar fronts.
    Nekhamkina O; Sheintuch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):055204. PubMed ID: 20866289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonantly forced inhomogeneous reaction-diffusion systems.
    Hemming CJ; Kapral R
    Chaos; 2000 Sep; 10(3):720-730. PubMed ID: 12779421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.