These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1702996)

  • 41. 500-MHz proton NMR evidence for two solution structures of the common arm base-paired segment of wheat germ 5S ribosomal RNA.
    Wu JJ; Marshall AG
    Biochemistry; 1990 Feb; 29(7):1722-30. PubMed ID: 2331462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of nucleic acid backbone conformation by 1H NMR.
    Kim SG; Lin LJ; Reid BR
    Biochemistry; 1992 Apr; 31(14):3564-74. PubMed ID: 1373647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative determination of the number of secondary and tertiary structure base pairs in transfer RNA in solution.
    Bolton PH; Jones CR; Bastedo-Lerner D; Wong KL; Kearns DR
    Biochemistry; 1976 Oct; 15(20):4370-7. PubMed ID: 788776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 15N-labeled 5S RNA. Identification of uridine base pairs in Escherichia coli 5S RNA by 1H-15N multiple quantum NMR.
    Davis DR; Yamaizumi Z; Nishimura S; Poulter CD
    Biochemistry; 1989 May; 28(9):4105-8. PubMed ID: 2752012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear Overhauser effect study and assignment of D stem and reverse-Hoogsteen base pair proton resonances in yeast tRNAAsp.
    Roy S; Redfield AG
    Nucleic Acids Res; 1981 Dec; 9(24):7073-83. PubMed ID: 6278454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and assignment of base pairs in the "tuned helix" of intact and ribonuclease T1 cleavage fragments of wheat germ ribosomal 5S RNA via 500-MHz proton homonuclear Overhauser enhancements.
    Li SJ; Marshall AG
    Biochemistry; 1986 Jun; 25(12):3673-82. PubMed ID: 3087417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proton NMR studies on the covalently linked RNA-DNA hybrid r(GCG)d(TATACGC). Assignment of proton resonances by application of the nuclear Overhauser effect.
    Mellema JR; Haasnoot CA; van der Marel GA; Wille G; van Boeckel CA; van Boom JH; Altona C
    Nucleic Acids Res; 1983 Aug; 11(16):5717-38. PubMed ID: 6193486
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural characterization of the active site of Brucella abortus Cu-Zn superoxide dismutase: a 15N and 1H NMR investigation.
    Chen YL; Park S; Thornburg RW; Tabatabai LB; Kintanar A
    Biochemistry; 1995 Sep; 34(38):12265-75. PubMed ID: 7547969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorine-19 nuclear magnetic resonance studies of the structure of 5-fluorouracil-substituted Escherichia coli transfer RNA.
    Hardin CC; Gollnick P; Kallenbach NR; Cohn M; Horowitz J
    Biochemistry; 1986 Sep; 25(19):5699-709. PubMed ID: 3535884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Imino proton assignments in the proton nuclear magnetic resonance spectrum of the lambda phage OR3 deoxyribonucleic acid fragment.
    Ulrich EL; John EM; Gough GR; Brunden MJ; Gilham PT; Westler WM; Markley JL
    Biochemistry; 1983 Sep; 22(19):4362-5. PubMed ID: 6226312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Symbolic generation and clustering of RNA 3-D motifs.
    Foucrault M; Major F
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():121-6. PubMed ID: 7584428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Demonstration of the GC-rich common arm in yeast ribosomal 5.8S RNA via 500-MHz proton nuclear magnetic resonance and Overhauser enhancements.
    Lee KM; Marshall AG
    Biochemistry; 1986 Dec; 25(25):8245-52. PubMed ID: 3545290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The NMR structure of 31mer RNA domain of Escherichia coli RNase P RNA using its non-uniformly deuterium labelled counterpart [the 'NMR-window' concept].
    Glemarec C; Kufel J; Földesi A; Maltseva T; Sandström A; Kirsebom LA; Chattopadhyaya J
    Nucleic Acids Res; 1996 Jun; 24(11):2022-35. PubMed ID: 8668532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate.
    Simorre JP; Legault P; Hangar AB; Michiels P; Pardi A
    Biochemistry; 1997 Jan; 36(3):518-25. PubMed ID: 9012667
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural characterization of a six-nucleotide RNA hairpin loop found in Escherichia coli, r(UUAAGU).
    Zhang H; Fountain MA; Krugh TR
    Biochemistry; 2001 Aug; 40(33):9879-86. PubMed ID: 11502181
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assignment of the low-field 1H NMR spectrum of Escherichia coli tRNAPhe using nuclear Overhauser effects.
    Hyde EI; Reid BR
    Biochemistry; 1985 Jul; 24(16):4307-14. PubMed ID: 3902083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach.
    Schmidt PG; Sierzputowska-Gracz H; Agris PF
    Biochemistry; 1987 Dec; 26(26):8529-34. PubMed ID: 3327524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.
    Hansen MR; Simorre JP; Hanson P; Mokler V; Bellon L; Beigelman L; Pardi A
    RNA; 1999 Aug; 5(8):1099-104. PubMed ID: 10445883
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA stem stability in the formation of a self-cleaving hammerhead structure.
    Sheldon CC; Symons RH
    Nucleic Acids Res; 1989 Jul; 17(14):5665-77. PubMed ID: 2474803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantifying the energetic interplay of RNA tertiary and secondary structure interactions.
    Silverman SK; Zheng M; Wu M; Tinoco I; Cech TR
    RNA; 1999 Dec; 5(12):1665-74. PubMed ID: 10606276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.