These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17030006)

  • 1. Development of an optode membrane for high pH values.
    Safavi A; Sadeghi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):575-7. PubMed ID: 17030006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optical chemical sensor for thorium (IV) determination based on thorin.
    Rastegarzadeh S; Pourreza N; Saeedi I
    J Hazard Mater; 2010 Jan; 173(1-3):110-4. PubMed ID: 19744784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a highly sensitive and selective mercury optical sensor based on immobilization of bis(thiophenal)-4,4'-methylenedianiline on a PVC membrane.
    Firooz AR; Ensafi AA; Hoseini KS; Kazemifard N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():73-8. PubMed ID: 24656354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an optically stable pH sensor based on immobilization of Giemsa on triacetylcellulose membrane.
    Khodadoust S; Kouri NC; Talebiyanpoor MS; Deris J; Pebdani AA
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():304-8. PubMed ID: 26354268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slab optical waveguide high-acidity sensor based on an absorbance change of protoporphyrin IX.
    Umemura T; Hotta H; Abe T; Takahashi Y; Takiguchi H; Uehara M; Odake T; Tsunoda K
    Anal Chem; 2006 Nov; 78(21):7511-6. PubMed ID: 17073420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane optode for uranium(VI) ions preconcentration and quantification based on a synergistic combination of 4-(2-thiazolylazo)-resorcinol with 8-hydroxyquinaldine.
    Kalyan Y; Pandey AK; Naidu GR; Reddy AV
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Dec; 74(5):1235-41. PubMed ID: 19879185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane optode for mercury(II) determination in aqueous samples.
    Kalyan Y; Pandey AK; Bhagat PR; Acharya R; Natarajan V; Naidu GR; Reddy AV
    J Hazard Mater; 2009 Jul; 166(1):377-82. PubMed ID: 19097696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber optic pH sensing with long wavelength excitable Schiff bases in the pH range of 7.0-12.0.
    Derinkuyu S; Ertekin K; Oter O; Denizalti S; Cetinkaya E
    Anal Chim Acta; 2007 Apr; 588(1):42-9. PubMed ID: 17386792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring.
    Badugu R; Kostov Y; Rao G; Tolosa L
    Biotechnol Prog; 2008; 24(6):1393-401. PubMed ID: 19194954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.
    Hosseini M; Heydari R; Alimoradi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():864-7. PubMed ID: 24709351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly selective optode for determination of Hg (II) by a modified immobilization of indigo carmine on a triacetylcellulose membrane.
    Tavallali H; Shaabanpur E; Vahdati P
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():216-21. PubMed ID: 22277622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-independent fluorescent chemosensor for highly selective lithium ion sensing.
    Citterio D; Takeda J; Kosugi M; Hisamoto H; Sasaki S; Komatsu H; Suzuki K
    Anal Chem; 2007 Feb; 79(3):1237-42. PubMed ID: 17263359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wide pH range optical sensing system based on a sol-gel encapsulated amino-functionalized corrole.
    Li CY; Zhang XB; Han ZX; Akermark B; Sun L; Shen GL; Yu RQ
    Analyst; 2006 Mar; 131(3):388-93. PubMed ID: 16496047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a disposable mercury ion-selective optode based on trityl-picolinamide as ionophore.
    Kuswandi B; Nuriman ; Dam HH; Reinhoudt DN; Verboom W
    Anal Chim Acta; 2007 May; 591(2):208-13. PubMed ID: 17481410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optical redox chemical sensor for determination of iodide.
    Rastegarzadeh S; Pourreza N; Saeedi I
    Talanta; 2009 Jan; 77(3):1032-6. PubMed ID: 19064087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films.
    Zhang Z; Jaffrezic-Renault N; Bessueille F; Leonard D; Xia S; Wang X; Chen L; Zhao J
    Anal Chim Acta; 2008 May; 615(1):73-9. PubMed ID: 18440365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PVC membrane sensor for diclofenac: applications in pharmaceutical analysis and drug binding studies.
    Maleki R; Matin AA; Hosseinzadeh R; Jouyban A
    Pharmazie; 2007 Sep; 62(9):672-7. PubMed ID: 17944320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipophilic polymer membrane optical sensor with a synthetic receptor for saccharide detection.
    Peng B; Qin Y
    Anal Chem; 2008 Aug; 80(15):6137-41. PubMed ID: 18593197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores.
    Wygladacz K; Qin Y; Wroblewski W; Bakker E
    Anal Chim Acta; 2008 Apr; 614(1):77-84. PubMed ID: 18405684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid.
    Ambrosi A; Morrin A; Smyth MR; Killard AJ
    Anal Chim Acta; 2008 Feb; 609(1):37-43. PubMed ID: 18243871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.