BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 17030019)

  • 1. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities.
    Jackson M; Stadthagen G; Gicquel B
    Tuberculosis (Edinb); 2007 Mar; 87(2):78-86. PubMed ID: 17030019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids.
    Gokhale RS; Saxena P; Chopra T; Mohanty D
    Nat Prod Rep; 2007 Apr; 24(2):267-77. PubMed ID: 17389997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.
    Mohanty D; Sankaranarayanan R; Gokhale RS
    Tuberculosis (Edinb); 2011 Sep; 91(5):448-55. PubMed ID: 21601529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid.
    Trivedi OA; Arora P; Vats A; Ansari MZ; Tickoo R; Sridharan V; Mohanty D; Gokhale RS
    Mol Cell; 2005 Mar; 17(5):631-43. PubMed ID: 15749014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dimycocerosate ester polyketide virulence factors of mycobacteria.
    Onwueme KC; Vos CJ; Zurita J; Ferreras JA; Quadri LE
    Prog Lipid Res; 2005 Sep; 44(5):259-302. PubMed ID: 16115688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chemical structure of Mycobacterium tuberculosis. Part I--lipids].
    Zieba M; Krawczyk M; Grzelewska-Rzymowska I; Kwiatkowska S
    Pol Merkur Lekarski; 2006 Sep; 21(123):262-5. PubMed ID: 17163188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Specific lipids of mycobacteria].
    Asselineau C; Asselineau J
    Ann Microbiol (Paris); 1978 Jan; 129(1):49-69. PubMed ID: 655525
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria.
    Trivedi OA; Arora P; Sridharan V; Tickoo R; Mohanty D; Gokhale RS
    Nature; 2004 Mar; 428(6981):441-5. PubMed ID: 15042094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The methyl-branched fortifications of Mycobacterium tuberculosis.
    Minnikin DE; Kremer L; Dover LG; Besra GS
    Chem Biol; 2002 May; 9(5):545-53. PubMed ID: 12031661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis.
    Siméone R; Léger M; Constant P; Malaga W; Marrakchi H; Daffé M; Guilhot C; Chalut C
    FEBS J; 2010 Jun; 277(12):2715-25. PubMed ID: 20553505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyketide versatility in the biosynthesis of complex mycobacterial cell wall lipids.
    Chopra T; Gokhale RS
    Methods Enzymol; 2009; 459():259-94. PubMed ID: 19362644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficiency in mycolipenate- and mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells.
    Rousseau C; Neyrolles O; Bordat Y; Giroux S; Sirakova TD; Prevost MC; Kolattukudy PE; Gicquel B; Jackson M
    Cell Microbiol; 2003 Jun; 5(6):405-15. PubMed ID: 12780778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipolytic enzymes in Mycobacterium tuberculosis.
    Côtes K; Bakala N'goma JC; Dhouib R; Douchet I; Maurin D; Carrière F; Canaan S
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):741-9. PubMed ID: 18309478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis.
    Siméone R; Constant P; Guilhot C; Daffé M; Chalut C
    J Bacteriol; 2007 Jul; 189(13):4597-602. PubMed ID: 17468241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple deletions in the polyketide synthase gene repertoire of Mycobacterium tuberculosis reveal functional overlap of cell envelope lipids in host-pathogen interactions.
    Passemar C; Arbués A; Malaga W; Mercier I; Moreau F; Lepourry L; Neyrolles O; Guilhot C; Astarie-Dequeker C
    Cell Microbiol; 2014 Feb; 16(2):195-213. PubMed ID: 24028583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis.
    Rousseau C; Sirakova TD; Dubey VS; Bordat Y; Kolattukudy PE; Gicquel B; Jackson M
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1837-1847. PubMed ID: 12855735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid transport proteins.
    Gimeno RE
    Curr Opin Lipidol; 2007 Jun; 18(3):271-6. PubMed ID: 17495600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights into the Mycolate-Containing Compound Biosynthesis and Transport in Mycobacteria.
    Quémard A
    Trends Microbiol; 2016 Sep; 24(9):725-738. PubMed ID: 27268593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond.
    Quadri LE
    Crit Rev Biochem Mol Biol; 2014; 49(3):179-211. PubMed ID: 24625105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis.
    Neyrolles O; Guilhot C
    Tuberculosis (Edinb); 2011 May; 91(3):187-95. PubMed ID: 21330212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.