BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17030093)

  • 1. Sensorimotor adaptation to inertial forces in a multi-force environment does not depend on the number of targets: indirect validation of the altered-proprioception hypothesis.
    Bourdin C; Bock O
    Neurosci Lett; 2006 Nov; 408(3):173-7. PubMed ID: 17030093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limb stiffness is modulated with spatial accuracy requirements during movement in the absence of destabilizing forces.
    Wong J; Wilson ET; Malfait N; Gribble PL
    J Neurophysiol; 2009 Mar; 101(3):1542-9. PubMed ID: 19144739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.
    Bourdin C; Gauthier G; Blouin J; Vercher JL
    Neurosci Lett; 2001 Mar; 301(1):25-8. PubMed ID: 11239708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation.
    DiZio P; Lackner JR
    J Vestib Res; 2002-2003; 12(5-6):291-9. PubMed ID: 14501105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence, time, or state representation: how does the motor control system adapt to variable environments?
    Karniel A; Mussa-Ivaldi FA
    Biol Cybern; 2003 Jul; 89(1):10-21. PubMed ID: 12836029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory motor coordination in an artificial gravity environment.
    Lackner JR; DiZio P
    J Gravit Physiol; 1997 Jul; 4(2):P9-12. PubMed ID: 11540711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to rotating artificial gravity environments.
    Lackner JR; DiZio PA
    J Vestib Res; 2003; 13(4-6):321-30. PubMed ID: 15096675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.
    Lackner JR; Dizio P
    J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reach adaptation and final position control amid environmental uncertainty after stroke.
    Scheidt RA; Stoeckmann T
    J Neurophysiol; 2007 Apr; 97(4):2824-36. PubMed ID: 17267755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid adaptation to scaled changes of the mechanical environment.
    Hinder MR; Milner TE
    J Neurophysiol; 2007 Nov; 98(5):3072-80. PubMed ID: 17898150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How is somatosensory information used to adapt to changes in the mechanical environment?
    Milner TE; Hinder MR; Franklin DW
    Prog Brain Res; 2007; 165():363-72. PubMed ID: 17925257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Parkinson's disease and dopaminergic medication on proprioceptive processing.
    Mongeon D; Blanchet P; Messier J
    Neuroscience; 2009 Jan; 158(2):426-40. PubMed ID: 18996173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor control and learning in altered dynamic environments.
    Lackner JR; DiZio P
    Curr Opin Neurobiol; 2005 Dec; 15(6):653-9. PubMed ID: 16271464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation.
    Hermsdörfer J; Elias Z; Cole JD; Quaney BM; Nowak DA
    Neurorehabil Neural Repair; 2008; 22(4):374-84. PubMed ID: 18223241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations.
    Nowak DA; Hermsdörfer J; Schneider E; Glasauer S
    Exp Brain Res; 2004 Jul; 157(2):241-54. PubMed ID: 15064877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaching during virtual rotation: context specific compensations for expected coriolis forces.
    Cohn JV; DiZio P; Lackner JR
    J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head positioning control in a gravito-inertial field and in normal gravity.
    Sarès F; Bourdin C; Prieur JM; Vercher JL; Menu JP; Gauthier GM
    J Vestib Res; 2004; 14(4):321-33. PubMed ID: 15328446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid adaptation to Coriolis force perturbations of arm trajectory.
    Lackner JR; Dizio P
    J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.