These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 17030129)

  • 1. Treatment of ligament laxity by electrothermal shrinkage or surgical plication: a morphologic and mechanical comparison.
    Hill AM; Jones IT; Hansen U; Suri A; Sandison A; Moss J; Wallace AL
    J Shoulder Elbow Surg; 2007; 16(1):95-100. PubMed ID: 17030129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrothermal shrinkage reduces laxity but alters creep behavior in a lapine ligament model.
    Wallace AL; Hollinshead RM; Frank CB
    J Shoulder Elbow Surg; 2001; 10(1):1-6. PubMed ID: 11182728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep behavior of a rabbit model of ligament laxity after electrothermal shrinkage in vivo.
    Wallace AL; Hollinshead RM; Frank CB
    Am J Sports Med; 2002; 30(1):98-102. PubMed ID: 11799003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo injury model of posterolateral knee instability.
    Laprade RF; Wentorf FA; Olson EJ; Carlson CS
    Am J Sports Med; 2006 Aug; 34(8):1313-21. PubMed ID: 16567454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative effects of monopolar radiofrequency energy and conservative management of mechanical properties of elongated lateral collateral ligament in rabbits: an experimental study.
    Ilhami K; Eray BM; Gokhan M; Ulukan I; Levent A
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):184-9. PubMed ID: 14967582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-assisted measurements of coronal knee joint laxity in vitro are related to low-stress behavior rather than structural properties of the collateral ligaments.
    Wilson WT; Deakin AH; Wearing SC; Payne AP; Clarke JV; Picard F
    Comput Aided Surg; 2013; 18(5-6):181-6. PubMed ID: 23697384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concomitant reconstruction of the medial collateral and posterior oblique ligaments for medial instability of the knee.
    Kim SJ; Lee DH; Kim TE; Choi NH
    J Bone Joint Surg Br; 2008 Oct; 90(10):1323-7. PubMed ID: 18827242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical comparison of 2 hybrid techniques for elbow ulnar collateral ligament reconstruction.
    Chronister JE; Morris RP; Andersen CR; Buford WL; Bennett JM; Mehlhoff TL
    J Hand Surg Am; 2014 Oct; 39(10):2033-40. PubMed ID: 25194771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomechanical evaluation of the valgus stability of elbow after reconstruction].
    Jiang T; Huang F; Peng J; Zhong Y; Xu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Feb; 19(2):141-4. PubMed ID: 15759933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and mechanical adaptations of rabbit medial collateral ligament after anterior cruciate ligament transection.
    Bray RC; Doschak MR; Gross TS; Zernicke RF
    J Orthop Res; 1997 Nov; 15(6):830-6. PubMed ID: 9497807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suture plication, thermal shrinkage, and sclerosing agents: effects on rat patellar tendon length and biomechanical strength.
    Aneja A; Karas SG; Weinhold PS; Afshari HM; Dahners LE
    Am J Sports Med; 2005 Nov; 33(11):1729-34. PubMed ID: 16093538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of joint load on the stiffness and laxity of ligament-deficient knees. An in vitro study of the anterior cruciate and medial collateral ligaments.
    Shoemaker SC; Markolf KL
    J Bone Joint Surg Am; 1985 Jan; 67(1):136-46. PubMed ID: 3968092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medial collateral ligament recession for chronic medial knee laxity.
    Backes JR; Wiltfong RE; Steensen RN
    J Knee Surg; 2013 Jun; 26(3):179-83. PubMed ID: 23288744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructive treatment of posterolateral rotatory instability of the knee: a biomechanical study.
    Suda Y; Seedhom BB; Matsumoto H; Otani T
    Am J Knee Surg; 2000; 13(2):110-6. PubMed ID: 11281332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of 2 surgical techniques of posterolateral corner reconstruction of the knee.
    Nau T; Chevalier Y; Hagemeister N; Deguise JA; Duval N
    Am J Sports Med; 2005 Dec; 33(12):1838-45. PubMed ID: 16157848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creep behavior of a rabbit model of ligament laxity after electrothermal shrinkage in vivo.
    Ozenci AM; Panjabi MM
    Am J Sports Med; 2002; 30(4):630; author reply 630. PubMed ID: 12130421
    [No Abstract]   [Full Text] [Related]  

  • 18. Biomechanical analysis of an isolated fibular (lateral) collateral ligament reconstruction using an autogenous semitendinosus graft.
    Coobs BR; LaPrade RF; Griffith CJ; Nelson BJ
    Am J Sports Med; 2007 Sep; 35(9):1521-7. PubMed ID: 17495013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Healing of subfailure ligament injury: comparison between immature and mature ligaments in a rat model.
    Provenzano PP; Hayashi K; Kunz DN; Markel MD; Vanderby R
    J Orthop Res; 2002 Sep; 20(5):975-83. PubMed ID: 12382962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of the beta 1, alpha 5, and alpha v integrin adhesion receptor subunits occurs coincident with remodeling of stress-deprived rabbit anterior cruciate and medial collateral ligaments.
    AbiEzzi SS; Gesink DS; Schreck PJ; Amiel D; Akeson WH; Woods VL
    J Orthop Res; 1995 Jul; 13(4):594-601. PubMed ID: 7545747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.