BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17030142)

  • 1. A combined study of heat and mass transfer in an infant incubator with an overhead screen.
    Ginalski MK; Nowak AJ; Wrobel LC
    Med Eng Phys; 2007 Jun; 29(5):531-41. PubMed ID: 17030142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of heat and mass transfer processes in neonatology.
    Ginalski MK; Nowak AJ; Wrobel LC
    Biomed Mater; 2008 Sep; 3(3):034113. PubMed ID: 18708705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational fluid mechanical study of the convective heat transfer in a closed space simulating an infant incubator.
    Yamaguchi T; Taylor TW; Okino H; Horio H; Hasegawa T
    Front Med Biol Eng; 1996; 7(2):129-41. PubMed ID: 8803561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mannequin-assessed dry-heat exchanges in the incubator-nursed newborn.
    Apedoh A; el Hajajji A; Telliez F; Bouferrache B; Libert JP; Rachid A
    Biomed Instrum Technol; 1999; 33(5):446-54. PubMed ID: 10511915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically heated simulator for relative evaluation of alternative infant incubator environments.
    Ultman JS; Berman S; Kirlin P; Vreslovic JM; Baer CB; Marks KH
    Med Instrum; 1988 Feb; 22(1):33-8. PubMed ID: 3357463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and numerical studies on convective heat transfer in a neonatal incubator.
    Kim YH; Kwon CH; Yoo SC
    Med Biol Eng Comput; 2002 Jan; 40(1):114-21. PubMed ID: 11954698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physics of thermal exchange between infants and their environment.
    LeBlanc MH
    Med Instrum; 1987 Feb; 21(1):11-5. PubMed ID: 3614024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat and mass transfer under an infant radiant warmer--development of a numerical model.
    Fic AM; Ingham DB; Ginalski MK; Nowak AJ; Wrobel L
    Med Eng Phys; 2010 Jun; 32(5):497-504. PubMed ID: 20356778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of recent applications of computational modelling in neonatology.
    Wrobel LC; Ginalski MK; Nowak AJ; Ingham DB; Fic AM
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2817-34. PubMed ID: 20439275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a fuzzy logic control of the infant incubator.
    Reddy NP; Mathur G; Hariharan SI
    Ann Biomed Eng; 2009 Oct; 37(10):2146-52. PubMed ID: 19609677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of thermal conditions in neonatal care: use of a manikin of premature baby size.
    Sarman I; Bolin D; Holmér I; Tunell R
    Am J Perinatol; 1992 Jul; 9(4):239-46. PubMed ID: 1627211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Heat exchanges and thermoregulation in the neonate].
    Tourneux P; Libert JP; Ghyselen L; Léké A; Delanaud S; Dégrugilliers L; Bach V
    Arch Pediatr; 2009 Jul; 16(7):1057-62. PubMed ID: 19410440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of radiative heat transfer using a geometric human model.
    Kakuta N; Yokoyama S; Nakamura M; Mabuchi K
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):324-31. PubMed ID: 11327500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption and temperature control of premature infants in a double-wall incubator.
    Marks KH; Lee CA; Bolan CD; Maisels MJ
    Pediatrics; 1981 Jul; 68(1):93-8. PubMed ID: 7243514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additional double-wall roof in single-wall, closed, convective incubators: Impact on body heat loss from premature infants and optimal adjustment of the incubator air temperature.
    Delanaud S; Decima P; Pelletier A; Libert JP; Stephan-Blanchard E; Bach V; Tourneux P
    Med Eng Phys; 2016 Sep; 38(9):922-8. PubMed ID: 27387899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of cereal-grain warming pad as a heat source for newborn transport.
    Jirapaet K; Jirapaet V
    J Med Assoc Thai; 2005 Nov; 88 Suppl 8():S203-10. PubMed ID: 16856441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A basic step toward understanding skin surface temperature distributions caused by internal heat sources.
    Wu Z; Liu HH; Lebanowski L; Liu Z; Hor PH
    Phys Med Biol; 2007 Sep; 52(17):5379-92. PubMed ID: 17762093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal energy conduction in a honey bee comb due to cell-heating bees.
    Humphrey JA; Dykes ES
    J Theor Biol; 2008 Jan; 250(1):194-208. PubMed ID: 17976654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams.
    Mhaisekar A; Kazmierczak MJ; Banerjee R
    J Synchrotron Radiat; 2005 May; 12(Pt 3):318-28. PubMed ID: 15840917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.
    Ben Yaghlene H; Leguerinel I; Hamdi M; Mafart P
    Int J Food Microbiol; 2009 Jul; 133(1-2):48-61. PubMed ID: 19447512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.