These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 1703016)
1. Potassium-selective amphotericin B channels are predominant in vesicles regardless of sidedness. Hartsel SC; Benz SK; Peterson RP; Whyte BS Biochemistry; 1991 Jan; 30(1):77-82. PubMed ID: 1703016 [TBL] [Abstract][Full Text] [Related]
2. Na+, K+ and Cl- selectivity of the permeability pathways induced through sterol-containing membrane vesicles by amphotericin B and other polyene antibiotics. Hartsel SC; Benz SK; Ayenew W; Bolard J Eur Biophys J; 1994; 23(2):125-32. PubMed ID: 8050397 [TBL] [Abstract][Full Text] [Related]
3. Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes. van Hoogevest P; de Kruijff B Biochim Biophys Acta; 1978 Aug; 511(3):397-407. PubMed ID: 687620 [TBL] [Abstract][Full Text] [Related]
4. Amphotericin B and Nystatin show different activities on sterol-free vesicles. Whyte BS; Peterson RP; Hartsel SC Biochem Biophys Res Commun; 1989 Oct; 164(2):609-14. PubMed ID: 2818579 [TBL] [Abstract][Full Text] [Related]
5. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. Ramos H; Valdivieso E; Gamargo M; Dagger F; Cohen BE J Membr Biol; 1996 Jul; 152(1):65-75. PubMed ID: 8660406 [TBL] [Abstract][Full Text] [Related]
6. Lipid and stress dependence of amphotericin B ion selective channels in sterol-free membranes. Ruckwardt T; Scott A; Scott J; Mikulecky P; Hartsel SC Biochim Biophys Acta; 1998 Jul; 1372(2):283-8. PubMed ID: 9675313 [TBL] [Abstract][Full Text] [Related]
7. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Bolard J; Legrand P; Heitz F; Cybulska B Biochemistry; 1991 Jun; 30(23):5707-15. PubMed ID: 2043613 [TBL] [Abstract][Full Text] [Related]
8. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Vertut-Croquin A; Bolard J; Chabbert M; Gary-Bobo C Biochemistry; 1983 Jun; 22(12):2939-44. PubMed ID: 6871175 [TBL] [Abstract][Full Text] [Related]
9. Osmotic stress sensitizes sterol-free phospholipid bilayers to the action of Amphotericin B. Wolf BD; Hartsel SC Biochim Biophys Acta; 1995 Sep; 1238(2):156-62. PubMed ID: 7548130 [TBL] [Abstract][Full Text] [Related]
10. A selective cholesterol-dependent induction of H+/OH- currents in phospholipid vesicles by amphotericin B. Hartsel SC; Perkins WR; McGarvey GJ; Cafiso DS Biochemistry; 1988 Apr; 27(8):2656-60. PubMed ID: 2840944 [TBL] [Abstract][Full Text] [Related]
11. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Cass A; Finkelstein A; Krespi V J Gen Physiol; 1970 Jul; 56(1):100-24. PubMed ID: 5514157 [TBL] [Abstract][Full Text] [Related]
12. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes. Dennis VW; Stead NW; Andreoli TE J Gen Physiol; 1970 Mar; 55(3):375-400. PubMed ID: 4938534 [TBL] [Abstract][Full Text] [Related]
13. A sequential mechanism for the formation of aqueous channels by amphotericin B in liposomes. The effect of sterols and phospholipid composition. Cohen BE Biochim Biophys Acta; 1992 Jul; 1108(1):49-58. PubMed ID: 1643081 [TBL] [Abstract][Full Text] [Related]
14. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy. Huang W; Zhang Z; Han X; Tang J; Wang J; Dong S; Wang E Biophys J; 2002 Dec; 83(6):3245-55. PubMed ID: 12496093 [TBL] [Abstract][Full Text] [Related]
15. Cholesterol markedly reduces ion permeability induced by membrane-bound amphotericin B. Matsuoka S; Murata M Biochim Biophys Acta; 2002 Aug; 1564(2):429-34. PubMed ID: 12175926 [TBL] [Abstract][Full Text] [Related]
16. Ion selectivity, transport properties and dynamics of amphotericin B channels studied over a wide range of acidity changes. Asandei A; Luchian T Colloids Surf B Biointerfaces; 2008 Nov; 67(1):99-106. PubMed ID: 18804968 [TBL] [Abstract][Full Text] [Related]
17. The action of pimaricin, etruscomycin and amphotericin B on liposomes with varying sterol content. Teerlink T; de Kruijff B; Demel RA Biochim Biophys Acta; 1980 Jul; 599(2):484-92. PubMed ID: 6967735 [TBL] [Abstract][Full Text] [Related]
18. Interaction of the polyene antibiotic amphotericin B with model membranes: differences between small and large unilamellar vesicles. Milhaud J; Hartmann MA; Bolard J Biochimie; 1989 Jan; 71(1):49-56. PubMed ID: 2497797 [TBL] [Abstract][Full Text] [Related]
19. A kinetic method for measuring functional delivery of amphotericin B by drug delivery systems. Peterson RP; Benz SK; Whyte BS; Hartsel SC Biochim Biophys Acta; 1991 Apr; 1064(1):165-8. PubMed ID: 1851039 [TBL] [Abstract][Full Text] [Related]
20. Quantifying membrane permeability of amphotericin B ion channels in single living cells. Yang TS; Ou KL; Peng PW; Liou BC; Wang WT; Huang YC; Tsai CM; Su CH Biochim Biophys Acta; 2013 Aug; 1828(8):1794-801. PubMed ID: 23562405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]