BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17030192)

  • 1. Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+ channel activity.
    Alberici LC; Oliveira HC; Patrício PR; Kowaltowski AJ; Vercesi AE
    Gastroenterology; 2006 Oct; 131(4):1228-34. PubMed ID: 17030192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial ATP-sensitive K(+) channels as redox signals to liver mitochondria in response to hypertriglyceridemia.
    Alberici LC; Oliveira HC; Paim BA; Mantello CC; Augusto AC; Zecchin KG; Gurgueira SA; Kowaltowski AJ; Vercesi AE
    Free Radic Biol Med; 2009 Nov; 47(10):1432-9. PubMed ID: 19703550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the mitochondrial ATP-sensitive K+ channel reduces apoptosis of spleen mononuclear cells induced by hyperlipidemia.
    Alberici LC; Paim BA; Zecchin KG; Mirandola SR; Pestana CR; Castilho RF; Vercesi AE; Oliveira HC
    Lipids Health Dis; 2013 Jun; 12():87. PubMed ID: 23764148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria.
    Fornazari M; de Paula JG; Castilho RF; Kowaltowski AJ
    J Neurosci Res; 2008 May; 86(7):1548-56. PubMed ID: 18189325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iptakalim ameliorates MPP+-induced astrocyte mitochondrial dysfunction by increasing mitochondrial complex activity besides opening mitoK(ATP) channels.
    Zhang S; Ding JH; Zhou F; Wang ZY; Zhou XQ; Hu G
    J Neurosci Res; 2009 Apr; 87(5):1230-9. PubMed ID: 19006086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production.
    Facundo HT; de Paula JG; Kowaltowski AJ
    Free Radic Biol Med; 2007 Apr; 42(7):1039-48. PubMed ID: 17349931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diazoxide protects against methylmalonate-induced neuronal toxicity.
    Kowaltowski AJ; Maciel EN; Fornazari M; Castilho RF
    Exp Neurol; 2006 Sep; 201(1):165-71. PubMed ID: 16740260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sulfonylureas on mitochondrial ATP-sensitive K+ channels in cardiac myocytes: implications for sulfonylurea controversy.
    Sato T; Nishida H; Miyazaki M; Nakaya H
    Diabetes Metab Res Rev; 2006; 22(5):341-7. PubMed ID: 16444778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-sensitive K+ channels in renal mitochondria.
    Cancherini DV; Trabuco LG; Rebouças NA; Kowaltowski AJ
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1291-6. PubMed ID: 12952853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes.
    Jabůrek M; Costa AD; Burton JR; Costa CL; Garlid KD
    Circ Res; 2006 Oct; 99(8):878-83. PubMed ID: 16960097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection.
    Wang X; Fisher PW; Xi L; Kukreja RC
    J Mol Cell Cardiol; 2008 Jan; 44(1):105-13. PubMed ID: 18021798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of hypoxenum on bioenergetic processes in mitochondria and the activity of ATP-sensitive potassium channel].
    Murzaeva SV; Abramova MB; Popova II; Gritsenko EN; Mironova GD; Lezhnev EI
    Biofizika; 2010; 55(5):814-21. PubMed ID: 21033347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose and glucose transporters regulate lymphatic pump activity through activation of the mitochondrial ATP-sensitive K+ channel.
    Li X; Mizuno R; Ono N; Ohhashi T
    J Physiol Sci; 2008 Aug; 58(4):249-61. PubMed ID: 18597699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the mitochondrial ATP-sensitive K+ channels in cardioprotection.
    Ardehali H
    Acta Biochim Pol; 2004; 51(2):379-90. PubMed ID: 15218535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The influence of the fluorine-containing activators of mitochondrial adenosine triphosphate sensitive potassium channels on the oxidative phosphorilation].
    Pyvovar SM; Korzhov VI; Strutyns'kyĭ RB; Iahupol's'kyĭ LM; Moĭbenko OO
    Fiziol Zh (1994); 2006; 52(3):25-33. PubMed ID: 16909753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The direct physiological effects of mitoK(ATP) opening on heart mitochondria.
    Costa AD; Quinlan CL; Andrukhiv A; West IC; Jabůrek M; Garlid KD
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H406-15. PubMed ID: 16143645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial energy metabolism and redox responses to hypertriglyceridemia.
    Alberici LC; Vercesi AE; Oliveira HC
    J Bioenerg Biomembr; 2011 Feb; 43(1):19-23. PubMed ID: 21258853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms.
    Hanley PJ; Daut J
    J Mol Cell Cardiol; 2005 Jul; 39(1):17-50. PubMed ID: 15907927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain.
    Bajgar R; Seetharaman S; Kowaltowski AJ; Garlid KD; Paucek P
    J Biol Chem; 2001 Sep; 276(36):33369-74. PubMed ID: 11441006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.