These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1005 related articles for article (PubMed ID: 17030419)

  • 1. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.
    Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M
    J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leachates of municipal solid waste incineration bottom ash from Macao: heavy metal concentrations and genotoxicity.
    Feng S; Wang X; Wei G; Peng P; Yang Y; Cao Z
    Chemosphere; 2007 Apr; 67(6):1133-7. PubMed ID: 17217988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate.
    Arickx S; Van Gerven T; Knaepkens T; Hindrix K; Evens R; Vandecasteele C
    Waste Manag; 2007; 27(10):1422-7. PubMed ID: 17531463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leachability of municipal solid waste ashes in simulated landfill conditions.
    Li LY; Ohtsubo M; Higashi T; Yamaoka S; Morishita T
    Waste Manag; 2007; 27(7):932-45. PubMed ID: 17258447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI).
    Aberg A; Kumpiene J; Ecke H
    Sci Total Environ; 2006 Feb; 355(1-3):1-12. PubMed ID: 15893365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors.
    Bilgili MS; Demir A; Ince M; Ozkaya B
    J Hazard Mater; 2007 Jun; 145(1-2):186-94. PubMed ID: 17141953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills.
    Erses AS; Onay TT; Yenigun O
    Bioresour Technol; 2008 Sep; 99(13):5418-26. PubMed ID: 18082400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization.
    Sicong T; Jianguo J; Chang Z
    J Hazard Mater; 2011 Sep; 192(3):1609-15. PubMed ID: 21782326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan.
    Jung CH; Matsuto T; Tanaka N; Okada T
    Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites.
    Lo HM; Liao YL
    J Hazard Mater; 2007 Apr; 142(1-2):512-9. PubMed ID: 17008003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.
    Visvanathan C; Yin NH; Karthikeyan OP
    Waste Manag; 2010 Dec; 30(12):2608-14. PubMed ID: 20829017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of municipal solid waste incineration residues in a landfill.
    Shimaoka T; Zhang R; Watanabe K
    Waste Manag; 2007; 27(10):1444-51. PubMed ID: 17656082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.
    Suzuki K; Anegawa A; Endo K; Yamada M; Ono Y; Ono Y
    Chemosphere; 2008 Nov; 73(9):1428-35. PubMed ID: 18842283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass-balance estimation of heavy metals and selected anions at a landfill receiving MSWI bottom ash and mixed construction wastes.
    Oygard JK; Gjengedal E; Måge A
    J Hazard Mater; 2005 Aug; 123(1-3):70-5. PubMed ID: 15950379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site.
    Dabo D; Badreddine R; De Windt L; Drouadaine I
    J Hazard Mater; 2009 Dec; 172(2-3):904-13. PubMed ID: 19733006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials -- A landfill reactor study.
    Michalzik B; Ilgen G; Hertel F; Hantsch S; Bilitewski B
    Waste Manag; 2007; 27(4):497-509. PubMed ID: 16714103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of leachate from MSWI bottom ash landfilling with anaerobic sulphate-reducing process.
    Sivula LJ; Väisänen AO; Rintala JA
    Water Res; 2007 Feb; 41(4):835-41. PubMed ID: 17224170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.