These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 17030423)
1. Distribution of copper in the vicinity of a deactivated mining site at Carajás in the Amazon region of Brazil. Cassella RJ; Wagener Ade L; Santelli RE; Wagener K; Tavares LY J Hazard Mater; 2007 Apr; 142(1-2):543-9. PubMed ID: 17030423 [TBL] [Abstract][Full Text] [Related]
2. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils. Ali NA; Ater M; Sunahara GI; Robidoux PY Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259 [TBL] [Abstract][Full Text] [Related]
3. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
4. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Cornejo P; Meier S; Borie G; Rillig MC; Borie F Sci Total Environ; 2008 Nov; 406(1-2):154-60. PubMed ID: 18762323 [TBL] [Abstract][Full Text] [Related]
5. The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Lacerda LD; de Souza M; Ribeiro MG Environ Pollut; 2004 May; 129(2):247-55. PubMed ID: 14987810 [TBL] [Abstract][Full Text] [Related]
6. Total copper content and its distribution in acid vineyards soils developed from granitic rocks. Nóvoa-Muñoz JC; Queijeiro JM; Blanco-Ward D; Alvarez-Olleros C; Martínez-Cortizas A; García-Rodeja E Sci Total Environ; 2007 May; 378(1-2):23-7. PubMed ID: 17287013 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Guo Z; Megharaj M; Beer M; Ming H; Mahmudur Rahman M; Wu W; Naidu R Bioresour Technol; 2009 Sep; 100(17):3831-6. PubMed ID: 19349173 [TBL] [Abstract][Full Text] [Related]
8. Seasonal and spatial patterns of metals at a restored copper mine site II. Copper in riparian soils and Bromus carinatus shoots. Silk WK; Bambic DG; O'Dell RE; Green PG Environ Pollut; 2006 Dec; 144(3):783-9. PubMed ID: 16631289 [TBL] [Abstract][Full Text] [Related]
9. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils. Vázquez S; Carpena RO; Bernal MP Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992 [TBL] [Abstract][Full Text] [Related]
10. Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd. Pastor J; Aparicio AM; Gutierrez-Maroto A; Hernández AJ Sci Total Environ; 2007 May; 378(1-2):114-8. PubMed ID: 17307245 [TBL] [Abstract][Full Text] [Related]
11. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
12. Assessing soil Cu content and anthropogenic influences using decision tree analysis. Zhang X; Lin F; Jiang Y; Wang K; Wong MT Environ Pollut; 2008 Dec; 156(3):1260-7. PubMed ID: 18455844 [TBL] [Abstract][Full Text] [Related]
13. Environmental-geochemical characteristics of Cu in the soil and water in copper-rich deposit area of southeastern Hubei Province, along the middle Yangtze River, Central China. Zhang L; Wang L; Yin K; Lv Y; Zhang D Environ Pollut; 2009 Nov; 157(11):2957-63. PubMed ID: 19564069 [TBL] [Abstract][Full Text] [Related]
14. Sequential extraction and availability of copper in Cu fungicide-amended vineyard soils from Southern Brazil. Nogueirol RC; Alleoni LR; Nachtigall GR; de Melo GW J Hazard Mater; 2010 Sep; 181(1-3):931-7. PubMed ID: 20579811 [TBL] [Abstract][Full Text] [Related]
15. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). do Valle CM; Santana GP; Augusti R; Egreja Filho FB; Windmöller CC Chemosphere; 2005 Feb; 58(6):779-92. PubMed ID: 15621191 [TBL] [Abstract][Full Text] [Related]
16. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils. Stuckey JW; Neaman A; Ravella R; Komarneni S; Martínez CE Environ Pollut; 2009 Jan; 157(1):12-6. PubMed ID: 18977059 [TBL] [Abstract][Full Text] [Related]
17. Copper bioavailability and fractionation in copper-contaminated sandy soils in the wet subtropics (southern Brazil). Mirlean N; Baisch P; Medeanic S Bull Environ Contam Toxicol; 2009 Mar; 82(3):373-7. PubMed ID: 19023509 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
19. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China. Wang HH; Li LQ; Wu XM; Pan GX J Environ Sci (China); 2006; 18(3):482-7. PubMed ID: 17294644 [TBL] [Abstract][Full Text] [Related]
20. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]