BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 17030519)

  • 1. Tigecycline does not induce proliferation or cytotoxin production by epidemic Clostridium difficile strains in a human gut model.
    Baines SD; Saxton K; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2006 Nov; 58(5):1062-5. PubMed ID: 17030519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of metronidazole on growth and toxin production by epidemic Clostridium difficile PCR ribotypes 001 and 027 in a human gut model.
    Freeman J; Baines SD; Saxton K; Wilcox MH
    J Antimicrob Chemother; 2007 Jul; 60(1):83-91. PubMed ID: 17483547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for low risk of Clostridium difficile infection associated with tigecycline.
    Wilcox MH
    Clin Microbiol Infect; 2007 Oct; 13(10):949-52. PubMed ID: 17697004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of vancomycin against epidemic Clostridium difficile strains in a human gut model.
    Baines SD; O'Connor R; Saxton K; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2009 Mar; 63(3):520-5. PubMed ID: 19112083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of piperacillin/tazobactam on Clostridium difficile growth and toxin production in a human gut model.
    Baines SD; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2005 Jun; 55(6):974-82. PubMed ID: 15860551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of linezolid for the treatment of Clostridium difficile infection caused by epidemic strains using an in vitro human gut model.
    Baines SD; Noel AR; Huscroft GS; Todhunter SL; O'Connor R; Hobbs JK; Freeman J; Lovering AM; Wilcox MH
    J Antimicrob Chemother; 2011 Jul; 66(7):1537-46. PubMed ID: 21504940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-amoxiclav induces proliferation and cytotoxin production of Clostridium difficile ribotype 027 in a human gut model.
    Chilton CH; Freeman J; Crowther GS; Todhunter SL; Nicholson S; Wilcox MH
    J Antimicrob Chemother; 2012 Apr; 67(4):951-4. PubMed ID: 22279183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of antimicrobial activity of ceftaroline against Clostridium difficile and propensity to induce C. difficile infection in an in vitro human gut model.
    Baines SD; Chilton CH; Crowther GS; Todhunter SL; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2013 Aug; 68(8):1842-9. PubMed ID: 23557928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of oritavancin versus vancomycin as treatments for clindamycin-induced Clostridium difficile PCR ribotype 027 infection in a human gut model.
    Baines SD; O'Connor R; Saxton K; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2008 Nov; 62(5):1078-85. PubMed ID: 18772161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tigecycline for the treatment of severe Clostridium difficile infection.
    Larson KC; Belliveau PP; Spooner LM
    Ann Pharmacother; 2011 Jul; 45(7-8):1005-10. PubMed ID: 21730279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of tigecycline against recent European clinical isolates of Clostridium difficile.
    Hawser SP
    Int J Antimicrob Agents; 2010 Jan; 35(1):97-8. PubMed ID: 19892528
    [No Abstract]   [Full Text] [Related]  

  • 12. [Epidemiological study of Clostridium difficile strains isolated in Jean-Verdier-René-Muret hospitals from 2001 to 2007].
    Poilane I; Fantinato C; Cruaud P; Collignon A
    Pathol Biol (Paris); 2008; 56(7-8):412-6. PubMed ID: 18842360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The epidemiology of Clostridium difficile in Scotland.
    Wiuff C; Brown DJ; Mather H; Banks AL; Eastaway A; Coia JE
    J Infect; 2011 Apr; 62(4):271-9. PubMed ID: 21300104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergence of reduced susceptibility to metronidazole in Clostridium difficile.
    Baines SD; O'Connor R; Freeman J; Fawley WN; Harmanus C; Mastrantonio P; Kuijper EJ; Wilcox MH
    J Antimicrob Chemother; 2008 Nov; 62(5):1046-52. PubMed ID: 18693234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A case-control study of community-associated Clostridium difficile infection.
    Wilcox MH; Mooney L; Bendall R; Settle CD; Fawley WN
    J Antimicrob Chemother; 2008 Aug; 62(2):388-96. PubMed ID: 18434341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Typing and susceptibility of bacterial isolates from the fidaxomicin (OPT-80) phase II study for C. difficile infection.
    Citron DM; Babakhani F; Goldstein EJ; Nagaro K; Sambol S; Sears P; Shue YK; Gerding DN
    Anaerobe; 2009 Dec; 15(6):234-6. PubMed ID: 19755166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed infection by Clostridium difficile in an in vitro model of the human gut.
    Baines SD; Crowther GS; Todhunter SL; Freeman J; Chilton CH; Fawley WN; Wilcox MH
    J Antimicrob Chemother; 2013 May; 68(5):1139-43. PubMed ID: 23354280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection.
    Crowther GS; Baines SD; Todhunter SL; Freeman J; Chilton CH; Wilcox MH
    J Antimicrob Chemother; 2013 Jan; 68(1):168-76. PubMed ID: 22966180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection.
    Chilton CH; Crowther GS; Śpiewak K; Brindell M; Singh G; Wilcox MH; Monaghan TM
    J Antimicrob Chemother; 2016 Apr; 71(4):975-85. PubMed ID: 26759363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of a short (4 day) course of oritavancin in the treatment of simulated Clostridium difficile infection using a human gut model.
    Chilton CH; Freeman J; Crowther GS; Todhunter SL; Wilcox MH
    J Antimicrob Chemother; 2012 Oct; 67(10):2434-7. PubMed ID: 22723601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.