These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17031569)

  • 41. Cytometric monitoring of growth, sporogenesis and spore cell sorting in Paenibacillus polymyxa (formerly Bacillus polymyxa).
    Comas-Riu J; Vives-Rego J
    J Appl Microbiol; 2002; 92(3):475-81. PubMed ID: 11872123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Examination of peak power dependence in the UV inactivation of bacterial spores.
    Rice JK; Ewell M
    Appl Environ Microbiol; 2001 Dec; 67(12):5830-2. PubMed ID: 11722941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure.
    Nguyen Thi Minh H; Durand A; Loison P; Perrier-Cornet JM; Gervais P
    Appl Microbiol Biotechnol; 2011 May; 90(4):1409-17. PubMed ID: 21380515
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface display of recombinant proteins on Bacillus subtilis spores.
    Isticato R; Cangiano G; Tran HT; Ciabattini A; Medaglini D; Oggioni MR; De Felice M; Pozzi G; Ricca E
    J Bacteriol; 2001 Nov; 183(21):6294-301. PubMed ID: 11591673
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid and effective method for the separation of Bacillus subtilis vegetative cells and spores.
    Seydlová G; Svobodová J
    Folia Microbiol (Praha); 2012 Sep; 57(5):455-7. PubMed ID: 22585313
    [No Abstract]   [Full Text] [Related]  

  • 46. Effect of ultraviolet radiation on spore viability and mosquitocidal activity of an indigenous ISPC-8 Bacillus sphaericus Neide strain.
    Hadapad AB; Vijayalakshmi N; Hire RS; Dongre TK
    Acta Trop; 2008 Aug; 107(2):113-6. PubMed ID: 18538292
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sterilization effects of UV laser irradiation on
    Nguyen MT; Nguyen HQ; Jang H; Noh S; Lee SY; Jang KS; Lee J; Sohn Y; Yee K; Jung H; Kim J
    Analyst; 2021 Dec; 146(24):7682-7692. PubMed ID: 34812439
    [No Abstract]   [Full Text] [Related]  

  • 48. Quantum dot incorporated Bacillus spore as nanosensor for viral infection.
    Zhang X; Zhou Q; Shen Z; Li Z; Fei R; Ji EH; Hu S; Hu Y
    Biosens Bioelectron; 2015 Dec; 74():575-80. PubMed ID: 26190468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The spore surface of intestinal isolates of Bacillus subtilis.
    Sirec T; Cangiano G; Baccigalupi L; Ricca E; Isticato R
    FEMS Microbiol Lett; 2014 Sep; 358(2):194-201. PubMed ID: 25048166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis.
    Hart SJ; Terray A; Leski TA; Arnold J; Stroud R
    Anal Chem; 2006 May; 78(9):3221-5. PubMed ID: 16643018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties.
    Berendsen EM; Zwietering MH; Kuipers OP; Wells-Bennik MH
    Food Microbiol; 2015 Feb; 45(Pt A):18-25. PubMed ID: 25481058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of forespore-specific overexpression of apurinic/apyrimidinic endonuclease Nfo on the DNA-damage resistance properties of Bacillus subtilis spores.
    Barraza-Salas M; Ibarra-Rodríguez JR; Mellado SJ; Salas-Pacheco JM; Setlow P; Pedraza-Reyes M
    FEMS Microbiol Lett; 2010 Jan; 302(2):159-65. PubMed ID: 19930460
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria.
    Zourob M; Mohr S; Brown BJ; Fielden PR; McDonnell MB; Goddard NJ
    Lab Chip; 2005 Dec; 5(12):1360-5. PubMed ID: 16286966
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual-laser, differential fluorescence correction method for reducing cellular background autofluorescence.
    Steinkamp JA; Stewart CC
    Cytometry; 1986 Nov; 7(6):566-74. PubMed ID: 3780360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure.
    Black EP; Wei J; Atluri S; Cortezzo DE; Koziol-Dube K; Hoover DG; Setlow P
    J Appl Microbiol; 2007 Jan; 102(1):65-76. PubMed ID: 17184321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gel-free proteomic identification of the Bacillus subtilis insoluble spore coat protein fraction.
    Abhyankar W; Beek AT; Dekker H; Kort R; Brul S; de Koster CG
    Proteomics; 2011 Dec; 11(23):4541-50. PubMed ID: 21905219
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex refractive index of nonspherical particles in the visible near infrared region: application to Bacillus subtilis spores.
    Velazco-Roa MA; Dzhongova E; Thennadil SN
    Appl Opt; 2008 Nov; 47(33):6183-9. PubMed ID: 19023381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel Impactor and Microsphere-Based Assay Used to Measure Containment of Aerosols Generated in a Flow Cytometer Cell Sorter.
    Perfetto SP; Hogarth PJ; Monard S; Fontes B; Reifel KM; Swan BK; Baijer J; Jellison ER; Lyon G; Lovelace P; Nguyen R; Ambrozak D; Holmes KL
    Cytometry A; 2019 Feb; 95(2):173-182. PubMed ID: 30561906
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence.
    Bhartia R; Salas EC; Hug WF; Reid RD; Lane AL; Edwards KJ; Nealson KH
    Appl Environ Microbiol; 2010 Nov; 76(21):7231-7. PubMed ID: 20817797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Serum stimulation and repression of flow immunofluorescence staining of bacteria.
    Phillips AP; Martin KL
    J Immunol Methods; 1985 Nov; 84(1-2):303-11. PubMed ID: 3934286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.