These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Numerical model of fluid flow and oxygen transport in a radial-flow microchannel containing hepatocytes. Ledezma GA; Folch A; Bhatia SN; Balis UJ; Yarmush ML; Toner M J Biomech Eng; 1999 Feb; 121(1):58-64. PubMed ID: 10080090 [TBL] [Abstract][Full Text] [Related]
4. Time-related analysis of metabolic liver functions, cellular morphology, and gene expression of hepatocytes cultured in the bioartificial liver of the Academic Medical Center in Amsterdam (AMC-BAL). Poyck PP; Hoekstra R; Chhatta A; Bloemendaal LT; van Wijk AC; Galavotti D; van Gulik TM; Chamuleau RA Tissue Eng; 2007 Jun; 13(6):1235-46. PubMed ID: 17518723 [TBL] [Abstract][Full Text] [Related]
5. In vitro comparison of two bioartificial liver support systems: MELS CellModule and AMC-BAL. Poyck PP; Pless G; Hoekstra R; Roth S; Van Wijk AC; Schwartländer R; Van Gulik TM; Sauer IM; Chamuleau RA Int J Artif Organs; 2007 Mar; 30(3):183-91. PubMed ID: 17417756 [TBL] [Abstract][Full Text] [Related]
6. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration. Adam AAA; van Wenum M; van der Mark VA; Jongejan A; Moerland PD; Houtkooper RH; Wanders RJA; Oude Elferink RP; Chamuleau RAFM; Hoekstra R Mitochondrion; 2018 Mar; 39():30-42. PubMed ID: 28844938 [TBL] [Abstract][Full Text] [Related]
7. Enhanced oxygen availability improves liver-specific functions of the AMC bioartificial liver. Poyck PP; Mareels G; Hoekstra R; van Wijk AC; van der Hoeven TV; van Gulik TM; Verdonck PR; Chamuleau RA Artif Organs; 2008 Feb; 32(2):116-26. PubMed ID: 18005273 [TBL] [Abstract][Full Text] [Related]
8. Perfusion flow rate substantially contributes to the performance of the HepaRG-AMC-bioartificial liver. Nibourg GA; Boer JD; van der Hoeven TV; Ackermans MT; van Gulik TM; Chamuleau RA; Hoekstra R Biotechnol Bioeng; 2012 Dec; 109(12):3182-8. PubMed ID: 22729831 [TBL] [Abstract][Full Text] [Related]
9. Experimental evaluation and theoretical modeling of oxygen transfer rate for the newly developed hollow fiber bioreactor with three compartments. Hilal-Alnaqbi A; Mourad AH; Yousef BF; Gaylor JD Biomed Mater Eng; 2013; 23(5):387-403. PubMed ID: 23988710 [TBL] [Abstract][Full Text] [Related]
10. Microfabricated grooved substrates as platforms for bioartificial liver reactors. Park J; Berthiaume F; Toner M; Yarmush ML; Tilles AW Biotechnol Bioeng; 2005 Jun; 90(5):632-44. PubMed ID: 15834948 [TBL] [Abstract][Full Text] [Related]
11. A computational model for the optimization of transport phenomena in a rotating hollow-fiber bioreactor for artificial liver. Consolo F; Fiore GB; Truscello S; Caronna M; Morbiducci U; Montevecchi FM; Redaelli A Tissue Eng Part C Methods; 2009 Mar; 15(1):41-55. PubMed ID: 19267518 [TBL] [Abstract][Full Text] [Related]
12. Increased hepatic functionality of the human hepatoma cell line HepaRG cultured in the AMC bioreactor. Nibourg GA; Hoekstra R; van der Hoeven TV; Ackermans MT; Hakvoort TB; van Gulik TM; Chamuleau RA Int J Biochem Cell Biol; 2013 Aug; 45(8):1860-8. PubMed ID: 23770120 [TBL] [Abstract][Full Text] [Related]
13. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Allen JW; Bhatia SN Biotechnol Bioeng; 2003 May; 82(3):253-62. PubMed ID: 12599251 [TBL] [Abstract][Full Text] [Related]
14. Using computational fluid dynamics to characterize and improve bioreactor performance. Kelly WJ Biotechnol Appl Biochem; 2008 Apr; 49(Pt 4):225-38. PubMed ID: 18338979 [TBL] [Abstract][Full Text] [Related]
15. Functional and morphological comparison of three primary liver cell types cultured in the AMC bioartificial liver. Poyck PP; Hoekstra R; van Wijk AC; Attanasio C; Calise F; Chamuleau RA; van Gulik TM Liver Transpl; 2007 Apr; 13(4):589-98. PubMed ID: 17394165 [TBL] [Abstract][Full Text] [Related]
16. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. Sullivan JP; Gordon JE; Bou-Akl T; Matthew HW; Palmer AF Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(6):585-606. PubMed ID: 18097786 [TBL] [Abstract][Full Text] [Related]
17. Phase 1 and phase 2 drug metabolism and bile acid production of HepaRG cells in a bioartificial liver in absence of dimethyl sulfoxide. Hoekstra R; Nibourg GA; van der Hoeven TV; Plomer G; Seppen J; Ackermans MT; Camus S; Kulik W; van Gulik TM; Elferink RP; Chamuleau RA Drug Metab Dispos; 2013 Mar; 41(3):562-7. PubMed ID: 23238784 [TBL] [Abstract][Full Text] [Related]
18. Cultivation of primary porcine hepatocytes in an OXY-HFB for use as a bioartificial liver device. Jasmund I; Langsch A; Simmoteit R; Bader A Biotechnol Prog; 2002; 18(4):839-46. PubMed ID: 12153319 [TBL] [Abstract][Full Text] [Related]
19. Computational fluid model incorporating liver metabolic activities in perfusion bioreactor. Hsu MN; Tan GD; Tania M; Birgersson E; Leo HL Biotechnol Bioeng; 2014 May; 111(5):885-95. PubMed ID: 24311109 [TBL] [Abstract][Full Text] [Related]
20. Liver support therapy: an overview of the AMC-bioartificial liver research. van de Kerkhove MP; Poyck PP; Deurholt T; Hoekstra R; Chamuleau RA; van Gulik TM Dig Surg; 2005; 22(4):254-64. PubMed ID: 16174982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]