BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 17031601)

  • 1. Tannin composition affects the oxidative activities of tree leaves.
    Barbehenn RV; Jones CP; Karonen M; Salminen JP
    J Chem Ecol; 2006 Oct; 32(10):2235-51. PubMed ID: 17031601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    Oecologia; 2009 Apr; 159(4):777-88. PubMed ID: 19148684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars.
    Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R
    J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars.
    Barbehenn RV; Jones CP; Hagerman AE; Karonen M; Salminen JP
    J Chem Ecol; 2006 Oct; 32(10):2253-67. PubMed ID: 17019621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.
    Barbehenn R; Weir Q; Salminen JP
    J Chem Ecol; 2008 Jun; 34(6):748-56. PubMed ID: 18473142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of tannin source and concentration from tree leaves on two species of tadpoles.
    Earl JE; Semlitsch RD
    Environ Toxicol Chem; 2015 Jan; 34(1):120-6. PubMed ID: 25319714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).
    Barbehenn RV; Maben RE; Knoester JJ
    Environ Entomol; 2008 Oct; 37(5):1113-8. PubMed ID: 19036189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves.
    Barbehenn RV; Walker AC; Uddin F
    J Chem Ecol; 2003 May; 29(5):1099-116. PubMed ID: 12857024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of protein quality versus quantity in alternative host plants for a leaf-feeding insect.
    Barbehenn RV; Niewiadomski J; Kochmanski J
    Oecologia; 2013 Sep; 173(1):1-12. PubMed ID: 23297046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves.
    Salminen JP; Roslin T; Karonen M; Sinkkonen J; Pihlaja K; Pulkkinen P
    J Chem Ecol; 2004 Sep; 30(9):1693-711. PubMed ID: 15586669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity.
    Katiki LM; Ferreira JF; Gonzalez JM; Zajac AM; Lindsay DS; Chagas AC; Amarante AF
    Vet Parasitol; 2013 Feb; 192(1-3):218-27. PubMed ID: 23102761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The D165H Polymorphism of QiMYB-like-1 Is Linked to Interactions between Tannin Accumulation, Herbivory and Biogeographical Determinants of
    Gallardo A; Morcuende D; Rodríguez-Romero M; Igeño MI; Pulido F; Quesada A
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of leaf life span, photosynthesis and defensive traits across seven species of deciduous broad-leaf tree seedlings.
    Matsuki S; Koike T
    Ann Bot; 2006 May; 97(5):813-7. PubMed ID: 16510512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns and sources of leaf tannin variation in yellow birch (Betula allegheniensis) and sugar maple (Acer saccharum).
    Baldwin IT; Schultz JC; Ward D
    J Chem Ecol; 1987 May; 13(5):1069-78. PubMed ID: 24302132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.
    Tuominen A
    Phytochemistry; 2013 Nov; 95():408-20. PubMed ID: 24050514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of sugar maple, red oak, and hemlock tannins on carbon and nitrogen cycling in temperate forest soils.
    Talbot JM; Finzi AC
    Oecologia; 2008 Mar; 155(3):583-92. PubMed ID: 18210159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of elevated ozone on phenolic substances content and total antioxidative capacity of Quercus mongolica leaves].
    Zhang GY; He XY; Tang L; Yan K; Chen W; Xu S; Li X
    Ying Yong Sheng Tai Xue Bao; 2009 Mar; 20(3):725-8. PubMed ID: 19637616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.