BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 17031842)

  • 1. Does static precede dynamic osteogenesis in endochondral ossification as occurs in intramembranous ossification?
    Ferretti M; Palumbo C; Bertoni L; Cavani F; Marotti G
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Nov; 288(11):1158-62. PubMed ID: 17031842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static and dynamic osteogenesis: two different types of bone formation.
    Ferretti M; Palumbo C; Contri M; Marotti G
    Anat Embryol (Berl); 2002 Dec; 206(1-2):21-9. PubMed ID: 12478364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static and dynamic osteogenesis.
    Marotti G
    Ital J Anat Embryol; 2010; 115(1-2):123-6. PubMed ID: 21073001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteocyte dendrogenesis in static and dynamic bone formation: an ultrastructural study.
    Palumbo C; Ferretti M; Marotti G
    Anat Rec A Discov Mol Cell Evol Biol; 2004 May; 278(1):474-80. PubMed ID: 15103743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes.
    Scammell BE; Roach HI
    J Bone Miner Res; 1996 Jun; 11(6):737-45. PubMed ID: 8725170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A light and electron microscopic study of the limb long bones perichondral ossification in the quail embryo (Coturnix coturnix japonica).
    Pourlis AF; Antonopoulos J; Magras IN
    Ital J Anat Embryol; 2006; 111(3):159-70. PubMed ID: 17312922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes.
    Cox LG; van Rietbergen B; van Donkelaar CC; Ito K
    J Biomech; 2011 Jun; 44(9):1765-70. PubMed ID: 21546025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Merging the old skeletal biology with the new. I. Intramembranous ossification, endochondral ossification, ectopic bone, secondary cartilage, and pathologic considerations.
    Cohen MM
    J Craniofac Genet Dev Biol; 2000; 20(2):84-93. PubMed ID: 11100738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development, physiology, and cell activity of bone].
    de Baat P; Heijboer MP; de Baat C
    Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles (Caudata, Amphibia) and Pogona (Squamata, Lepidosauria).
    Cubo J; Hui M; Clarac F; Quilhac A
    J Morphol; 2017 May; 278(5):621-628. PubMed ID: 28145573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypertrophy and physiological death of equine chondrocytes in vitro.
    Ahmed YA; Tatarczuch L; Pagel CN; Davies HM; Mirams M; Mackie EJ
    Equine Vet J; 2007 Nov; 39(6):546-52. PubMed ID: 18065314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion molecules in skeletogenesis: I. Transient expression of neural cell adhesion molecules (NCAM) in osteoblasts during endochondral and intramembranous ossification.
    Lee YS; Chuong CM
    J Bone Miner Res; 1992 Dec; 7(12):1435-46. PubMed ID: 1481729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification.
    Tonna S; Poulton IJ; Taykar F; Ho PW; Tonkin B; Crimeen-Irwin B; Tatarczuch L; McGregor NE; Mackie EJ; Martin TJ; Sims NA
    Development; 2016 Feb; 143(4):648-57. PubMed ID: 26755702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endochondral ossification in fracture callus during long bone repair: the localisation of 'cavity-lining cells' within the cartilage.
    Ford JL; Robinson DE; Scammell BE
    J Orthop Res; 2004 Mar; 22(2):368-75. PubMed ID: 15013098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cartilage canals in the formation of secondary centres of ossification.
    Kugler JH; Tomlinson A; Wagstaff A; Ward SM
    J Anat; 1979 Oct; 129(Pt 3):493-506. PubMed ID: 541238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histological studies of bone formation during pedicle restoration and early antler regeneration in roe deer and fallow deer.
    Kierdorf U; Stoffels E; Stoffels D; Kierdorf H; Szuwart T; Clemen G
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):741-51. PubMed ID: 12845710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microvascular invasion during endochondral ossification in experimental fractures in rats.
    Mark H; Penington A; Nannmark U; Morrison W; Messina A
    Bone; 2004 Aug; 35(2):535-42. PubMed ID: 15268906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bcl-2-associated athanogene-1 (BAG-1): a transcriptional regulator mediating chondrocyte survival and differentiation during endochondral ossification.
    Tare RS; Townsend PA; Packham GK; Inglis S; Oreffo RO
    Bone; 2008 Jan; 42(1):113-28. PubMed ID: 17950682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus).
    Li C; Suttie JM
    Anat Rec; 1994 Jun; 239(2):198-215. PubMed ID: 8059982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.