BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 17031842)

  • 21. Morphological features of cartilage observed during mandibular distraction in rabbits.
    Furuta N; Yoshioka I; Fukuizumi T; Tominaga K; Nishihara T; Fukuda J
    Int J Oral Maxillofac Surg; 2007 Mar; 36(3):243-9. PubMed ID: 17142010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron microscopy of the epiphyseal cartilage plate. A critical review of electron microscopy observations on enchondral ossification.
    Anderson CE; Parker J
    Clin Orthop Relat Res; 1968; 58():225-41. PubMed ID: 4877097
    [No Abstract]   [Full Text] [Related]  

  • 23. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M
    Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of bone formation ingrafted periosteum harvested from tibia and calvaria.
    Fujii T; Ueno T; Kagawa T; Sakata Y; Sugahara T
    Microsc Res Tech; 2006 Jul; 69(7):580-4. PubMed ID: 16718663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Androgen-dependent and independent process of bone formation in the distal segment of Os penis in the rat.
    Murakami R; Izumi K; Yamaoka I
    Eur J Morphol; 1995 Nov; 33(4):393-400. PubMed ID: 8835139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice.
    Sakagami N; Amizuka N; Li M; Takeuchi K; Hoshino M; Nakamura M; Nozawa-Inoue K; Udagawa N; Maeda T
    Micron; 2005; 36(7-8):688-95. PubMed ID: 16182547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular events associated with the induction of bone by demineralized bone.
    Bernick S; Paule W; Ertl D; Nishimoto SK; Nimni ME
    J Orthop Res; 1989; 7(1):1-11. PubMed ID: 2642300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of NG2 proteoglycan during endochondral and intramembranous ossification.
    Fukushi J; Inatani M; Yamaguchi Y; Stallcup WB
    Dev Dyn; 2003 Sep; 228(1):143-8. PubMed ID: 12950088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer model of endochondral growth and ossification in long bones: biological and mechanobiological influences.
    Stevens SS; Beaupré GS; Carter DR
    J Orthop Res; 1999 Sep; 17(5):646-53. PubMed ID: 10569472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereological characteristics of the mesenchymal complex in the degenerative-osteogenic zone of the growth cartilage of the tibia of premature neonates.
    Baltadjiev G
    Anat Anz; 1987; 163(3):243-8. PubMed ID: 3605638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and location of bone-forming cells within cartilage canals on their course into the secondary ossification centre.
    Blumer MJ; Schwarzer C; Pérez MT; Konakci KZ; Fritsch H
    J Anat; 2006 Jun; 208(6):695-707. PubMed ID: 16761972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of the microcirculation of the secondary ossification center in rat humeral head.
    Morini S; Continenza MA; Ricciardi G; Gaudio E; Pannarale L
    Anat Rec A Discov Mol Cell Evol Biol; 2004 May; 278(1):419-27. PubMed ID: 15103736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fate of hypertrophic chondrocytes in growth plates transplanted intramuscularly in the rabbit.
    Miki T; Yamamuro T
    Clin Orthop Relat Res; 1987 May; (218):276-82. PubMed ID: 3568489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The replacement processes of growth plate cartilage to bone in endochondral ossification of mandibular condyle].
    Sasaki T; Kim TW; Debari K; Nagamine H
    Kaibogaku Zasshi; 1996 Apr; 71(2):106-14. PubMed ID: 8741279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age and sexually dimorphic changes in costal cartilages. A preliminary microscopic study.
    Rejtarová O; Hejna P; Soukup T; Kuchar M
    Forensic Sci Int; 2009 Dec; 193(1-3):72-8. PubMed ID: 19819654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of chondrocytes in intramembranous and endochondral ossification during distraction osteogenesis in the rabbit.
    Li G; Simpson AH; Triffitt JT
    Calcif Tissue Int; 1999 Apr; 64(4):310-7. PubMed ID: 10089224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The interaction of chondrocytes from growth cartilage and bone marrow cells. An in vitro model system for endochondral ossification].
    Takase T
    Osaka Daigaku Shigaku Zasshi; 1979 Jun; 24(1):74-94. PubMed ID: 297156
    [No Abstract]   [Full Text] [Related]  

  • 38. Apoptosis during intramembranous ossification.
    Palumbo C; Ferretti M; De Pol A
    J Anat; 2003 Dec; 203(6):589-98. PubMed ID: 14686694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrastructural identification of cells involved in the healing of intramembranous and endochondral bones.
    Rabie AB; Dan Z; Samman N
    Int J Oral Maxillofac Surg; 1996 Oct; 25(5):383-8. PubMed ID: 8961024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Formation of the Epiphyseal Bone Plate Occurs via Combined Endochondral and Intramembranous-Like Ossification.
    Fernández-Iglesias Á; Fuente R; Gil-Peña H; Alonso-Durán L; Santos F; López JM
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.