BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 17031866)

  • 21. Modeling of bioreactor hydrodynamic environment and its effects on tissue growth.
    Bilgen B; Barabino GA
    Methods Mol Biol; 2012; 868():237-55. PubMed ID: 22692614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.
    Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE
    J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.
    Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T
    J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Squeeze pressure bioreactor: a hydrodynamic bioreactor for noncontact stimulation of cartilage constructs.
    De Maria C; Giusti S; Mazzei D; Crawford A; Ahluwalia A
    Tissue Eng Part C Methods; 2011 Jul; 17(7):757-64. PubMed ID: 21410315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shear and Compression Bioreactor for Cartilage Synthesis.
    Shahin K; Doran PM
    Methods Mol Biol; 2015; 1340():221-33. PubMed ID: 26445842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioreactor cultivation of three-dimensional cartilage-carrier-constructs.
    Nagel-Heyer S; Goepfert C; Feyerabend F; Petersen JP; Adamietz P; Meenen NM; Pörtner R
    Bioprocess Biosyst Eng; 2005 Jul; 27(4):273-80. PubMed ID: 15928929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioreactor design for tissue engineering.
    Pörtner R; Nagel-Heyer S; Goepfert C; Adamietz P; Meenen NM
    J Biosci Bioeng; 2005 Sep; 100(3):235-45. PubMed ID: 16243271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Culturing functional cartilage tissue under a novel bionic mechanical condition.
    Sun M; Lv D; Zhang C; Zhu L
    Med Hypotheses; 2010 Dec; 75(6):657-9. PubMed ID: 20800365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cartilage tissue engineering using cryogenic chondrocytes.
    Gorti GK; Lo J; Falsafi S; Kosek J; Quan SY; Khuu DT; Koch RJ
    Arch Otolaryngol Head Neck Surg; 2003 Aug; 129(8):889-93. PubMed ID: 12925350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts.
    Hahn MS; McHale MK; Wang E; Schmedlen RH; West JL
    Ann Biomed Eng; 2007 Feb; 35(2):190-200. PubMed ID: 17180465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and validation of a bi-axial loading bioreactor for mechanical stimulation of engineered cartilage.
    Yusoff N; Abu Osman NA; Pingguan-Murphy B
    Med Eng Phys; 2011 Jul; 33(6):782-8. PubMed ID: 21356602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.
    Khan AA; Surrao DC
    Tissue Eng Part C Methods; 2012 May; 18(5):358-68. PubMed ID: 22092352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-engineered versus native cartilage: linkage between cellular mechano-transduction and biomechanical properties.
    Lee JH; Kisiday J; Grodzinsky AJ
    Novartis Found Symp; 2003; 249():52-64; discussion 64-9, 170-4, 239-41. PubMed ID: 12708649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation.
    Seidel JO; Pei M; Gray ML; Langer R; Freed LE; Vunjak-Novakovic G
    Biorheology; 2004; 41(3-4):445-58. PubMed ID: 15299276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrated experimental-computational approach for the study of engineered cartilage constructs subjected to combined regimens of hydrostatic pressure and interstitial perfusion.
    Moretti M; Freed LE; Padera RF; Laganà K; Boschetti F; Raimondi MT
    Biomed Mater Eng; 2008; 18(4-5):273-8. PubMed ID: 19065033
    [No Abstract]   [Full Text] [Related]  

  • 38. Bioreactors for tissue engineering.
    Chen HC; Hu YC
    Biotechnol Lett; 2006 Sep; 28(18):1415-23. PubMed ID: 16955350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of continuous culture on the growth and structure of tissue-engineered cartilage.
    Khan AA; Suits JM; Kandel RA; Waldman SD
    Biotechnol Prog; 2009; 25(2):508-15. PubMed ID: 19294749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.