BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17031929)

  • 41. Metal-catalyst-free growth of single-walled carbon nanotubes.
    Liu B; Ren W; Gao L; Li S; Pei S; Liu C; Jiang C; Cheng HM
    J Am Chem Soc; 2009 Feb; 131(6):2082-3. PubMed ID: 19170494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.
    Kumar NA; Bund A; Cho BG; Lim KT; Jeong YT
    Nanotechnology; 2009 Jun; 20(22):225608. PubMed ID: 19436092
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron beam induced current measurements on single-walled carbon nanotube devices.
    Park JK; Ahn YH; Park JY; Lee S; Park KH
    Nanotechnology; 2010 Mar; 21(11):115706. PubMed ID: 20173234
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire.
    Han S; Liu X; Zhou C
    J Am Chem Soc; 2005 Apr; 127(15):5294-5. PubMed ID: 15826147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coupling of Raman radial breathing modes in double-wall carbon nanotubes and bundles of nanotubes.
    Han SP; Goddard WA
    J Phys Chem B; 2009 May; 113(20):7199-204. PubMed ID: 19388682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes.
    Yang SH; Shin WH; Lee JW; Kim SY; Woo SI; Kang JK
    J Phys Chem B; 2006 Jul; 110(28):13941-6. PubMed ID: 16836345
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes.
    Burg BR; Schneider J; Muoth M; Durrer L; Helbling T; Schirmer NC; Schwamb T; Hierold C; Poulikakos D
    Langmuir; 2009 Jul; 25(14):7778-82. PubMed ID: 19537808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for, and an understanding of, the initial nucleation of carbon nanotubes produced by a floating catalyst method.
    Ren W; Li F; Cheng HM
    J Phys Chem B; 2006 Aug; 110(34):16941-6. PubMed ID: 16927985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A background level of oxygen-containing aromatics for synthetic control of carbon nanotube structure.
    Futaba DN; Goto J; Yasuda S; Yamada T; Yumura M; Hata K
    J Am Chem Soc; 2009 Nov; 131(44):15992-3. PubMed ID: 19842670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.
    Connolly T; Smith RC; Hernandez Y; Gun'ko Y; Coleman JN; Carey JD
    Small; 2009 Apr; 5(7):826-31. PubMed ID: 19199333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physicochemical and biological characterization of single-walled and double-walled carbon nanotubes in biological media.
    Liu WT; Bien MY; Chuang KJ; Chang TY; Jones T; BéruBé K; Lalev G; Tsai DH; Chuang HC; Cheng TJ;
    J Hazard Mater; 2014 Sep; 280():216-25. PubMed ID: 25164386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient fabrication of wafer scale thin film of individualized single-walled carbon nanotubes by dual-nozzle spin casting.
    Kim YS; Kwon S; Shin DH; Shim HC; Woo JY; Lim D; Kwak YK; Kim S; Han CS
    Rev Sci Instrum; 2010 Jun; 81(6):063905. PubMed ID: 20590250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of surface cobalt silicate in single-walled carbon nanotube synthesis from silica-supported cobalt catalysts.
    Li N; Wang X; Derrouiche S; Haller GL; Pfefferle LD
    ACS Nano; 2010 Mar; 4(3):1759-67. PubMed ID: 20201563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection.
    Li X; Tu X; Zaric S; Welsher K; Seo WS; Zhao W; Dai H
    J Am Chem Soc; 2007 Dec; 129(51):15770-1. PubMed ID: 18052285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields.
    Baba K; Kaneko T; Hatakeyama R; Motomiya K; Tohji K
    Chem Commun (Camb); 2010 Jan; 46(2):255-7. PubMed ID: 20024343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets.
    Pumera M
    Langmuir; 2007 May; 23(11):6453-8. PubMed ID: 17455966
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Noncovalent interactions between organometallic metallocene complexes and single-walled carbon nanotubes.
    Sceats EL; Green JC
    J Chem Phys; 2006 Oct; 125(15):154704. PubMed ID: 17059280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.