These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 17032710)

  • 1. The somatotopic organization of cytoarchitectonic areas on the human parietal operculum.
    Eickhoff SB; Grefkes C; Zilles K; Fink GR
    Cereb Cortex; 2007 Aug; 17(8):1800-11. PubMed ID: 17032710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.
    Eickhoff SB; Amunts K; Mohlberg H; Zilles K
    Cereb Cortex; 2006 Feb; 16(2):268-79. PubMed ID: 15888606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Within-limb somatotopic organization in human SI and parietal operculum for the leg: an fMRI study.
    Bao R; Wei P; Li K; Lu J; Zhao C; Wang Y; Zhang T
    Brain Res; 2012 Mar; 1445():30-9. PubMed ID: 22305143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions.
    Eickhoff SB; Schleicher A; Zilles K; Amunts K
    Cereb Cortex; 2006 Feb; 16(2):254-67. PubMed ID: 15888607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial resolution of fMRI in the human parasylvian cortex: comparison of somatosensory and auditory activation.
    Ozcan M; Baumgärtner U; Vucurevic G; Stoeter P; Treede RD
    Neuroimage; 2005 Apr; 25(3):877-87. PubMed ID: 15808988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study.
    Eickhoff SB; Lotze M; Wietek B; Amunts K; Enck P; Zilles K
    Neuroimage; 2006 Jul; 31(3):1004-14. PubMed ID: 16529950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Five topographically organized fields in the somatosensory cortex of the flying fox: microelectrode maps, myeloarchitecture, and cortical modules.
    Krubitzer LA; Calford MB
    J Comp Neurol; 1992 Mar; 317(1):1-30. PubMed ID: 1573055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the evolution of multiple somatosensory representations in primates: the organization of anterior parietal cortex in the New World Callitrichid, Saguinus.
    Carlson M; Huerta MF; Cusick CG; Kaas JH
    J Comp Neurol; 1986 Apr; 246(3):409-26. PubMed ID: 3084599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dodecapus: An MR-compatible system for somatosensory stimulation.
    Huang RS; Sereno MI
    Neuroimage; 2007 Feb; 34(3):1060-73. PubMed ID: 17182259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there a role for the parietal lobes in the perception of pain?
    Duncan GH; Albanese MC
    Adv Neurol; 2003; 93():69-86. PubMed ID: 12894402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Face representation in the human secondary somatosensory cortex.
    Nguyen BT; Inui K; Hoshiyama M; Nakata H; Kakigi R
    Clin Neurophysiol; 2005 Jun; 116(6):1247-53. PubMed ID: 15978486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fingertip representation in the human somatosensory cortex: an fMRI study.
    Gelnar PA; Krauss BR; Szeverenyi NM; Apkarian AV
    Neuroimage; 1998 May; 7(4 Pt 1):261-83. PubMed ID: 9626668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connections of somatosensory cortex in megachiropteran bats: the evolution of cortical fields in mammals.
    Krubitzer LA; Calford MB; Schmid LM
    J Comp Neurol; 1993 Jan; 327(4):473-506. PubMed ID: 8440777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI reflects functional connectivity of human somatosensory cortex.
    Blatow M; Nennig E; Durst A; Sartor K; Stippich C
    Neuroimage; 2007 Sep; 37(3):927-36. PubMed ID: 17629500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatotopographic organization in the second somatosensory area of M. fascicularis.
    Robinson CJ; Burton H
    J Comp Neurol; 1980 Jul; 192(1):43-67. PubMed ID: 7410613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: comparisons with other primates.
    Sur M; Nelson RJ; Kaas JH
    J Comp Neurol; 1982 Oct; 211(2):177-92. PubMed ID: 7174889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels.
    Krubitzer LA; Sesma MA; Kaas JH
    J Comp Neurol; 1986 Aug; 250(4):403-30. PubMed ID: 3760247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation.
    Stancák A; Polácek H; Vrána J; Rachmanová R; Hoechstetter K; Tintra J; Scherg M
    Neuroimage; 2005 Mar; 25(1):8-20. PubMed ID: 15734339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemispheric mapping of secondary somatosensory cortex in the rat.
    Benison AM; Rector DM; Barth DS
    J Neurophysiol; 2007 Jan; 97(1):200-7. PubMed ID: 17005614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional clusters in the human parietal cortex as revealed by an observer-independent meta-analysis of functional activation studies.
    Nickel J; Seitz RJ
    Anat Embryol (Berl); 2005 Dec; 210(5-6):463-72. PubMed ID: 16249866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.