These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Expression of calpastatin isoforms in muscle and functionality of multiple calpastatin promoters. Parr T; Jewell KK; Sensky PL; Brameld JM; Bardsley RG; Buttery PJ Arch Biochem Biophys; 2004 Jul; 427(1):8-15. PubMed ID: 15178483 [TBL] [Abstract][Full Text] [Related]
4. Calpastatin overexpression in the skeletal muscle of mice prevents clenbuterol-induced muscle hypertrophy and phenotypic shift. Douillard A; Galbes O; Begue G; Rossano B; Levin J; Vernus B; Bonnieu A; Candau R; Py G Clin Exp Pharmacol Physiol; 2012 Apr; 39(4):364-72. PubMed ID: 22300302 [TBL] [Abstract][Full Text] [Related]
5. Four promoters direct expression of the calpastatin gene. Raynaud P; Jayat-Vignoles C; Laforêt MP; Levéziel H; Amarger V Arch Biochem Biophys; 2005 May; 437(1):69-77. PubMed ID: 15820218 [TBL] [Abstract][Full Text] [Related]
6. Effects of epinephrine infusion on expression of calpastatin in porcine cardiac and skeletal muscle. Parr T; Sensky PL; Arnold MK; Bardsley RG; Buttery PJ Arch Biochem Biophys; 2000 Feb; 374(2):299-305. PubMed ID: 10666311 [TBL] [Abstract][Full Text] [Related]
7. Changes in calpain and calpastatin mRNA induced by beta-adrenergic stimulation of bovine skeletal muscle. Parr T; Bardsley RG; Gilmour RS; Buttery PJ Eur J Biochem; 1992 Sep; 208(2):333-9. PubMed ID: 1355730 [TBL] [Abstract][Full Text] [Related]
8. cAMP responsiveness of the bovine calpastatin gene promoter. Cong M; Goll DE; Antin PB Biochim Biophys Acta; 1998 Nov; 1443(1-2):186-92. PubMed ID: 9838106 [TBL] [Abstract][Full Text] [Related]
9. Porcine somatotropin improves growth in finishing pigs without altering calpain 3 (p94) or alpha-actin mRNA abundance and has a differential effect on calpastatin transcription products. Ji SQ; Frank GR; Cornelius SG; Willis GM; Spurlock ME J Anim Sci; 1998 May; 76(5):1389-95. PubMed ID: 9621945 [TBL] [Abstract][Full Text] [Related]
10. Combined effect of epinephrine and exercise on calpain/calpastatin and cathepsin B and L activity in porcine longissimus muscle. Ertbjerg P; Henckel P; Karlsson A; Larsen LM; Møller AJ J Anim Sci; 1999 Sep; 77(9):2428-36. PubMed ID: 10492449 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of growth in pigs through treatment of the neonate with clenbuterol and somatotropin. Sillence MN; Munn KJ; Campbell RG J Anim Sci; 2002 Jul; 80(7):1852-62. PubMed ID: 12162652 [TBL] [Abstract][Full Text] [Related]
12. Clenbuterol upregulates histone demethylase JHDM2a via the β2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Li Y; He J; Sui S; Hu X; Zhao Y; Li N Cell Signal; 2012 Dec; 24(12):2297-306. PubMed ID: 22820505 [TBL] [Abstract][Full Text] [Related]
13. beta2-Adrenergic receptor responsiveness of the calpain-calpastatin system and attenuation of neuronal death in rat hippocampus after transient global ischemia. Rami A; Volkmann T; Agarwal R; Schoninger S; Nürnberger F; Saido TC; Winckler J Neurosci Res; 2003 Dec; 47(4):373-82. PubMed ID: 14630341 [TBL] [Abstract][Full Text] [Related]
14. The relation between dietary restriction or clenbuterol (a selective beta 2 agonist) treatment on muscle growth and calpain proteinase (EC 3.4.22.17) and calpastatin activities in lambs. Higgins JA; Lasslett YV; Bardsley RG; Buttery PJ Br J Nutr; 1988 Nov; 60(3):645-52. PubMed ID: 2851316 [TBL] [Abstract][Full Text] [Related]
15. Regulation of insulin-like growth factor I transcription by cyclic adenosine 3',5'-monophosphate (cAMP) in fetal rat bone cells through an element within exon 1: protein kinase A-dependent control without a consensus AMP response element. McCarthy TL; Thomas MJ; Centrella M; Rotwein P Endocrinology; 1995 Sep; 136(9):3901-8. PubMed ID: 7649098 [TBL] [Abstract][Full Text] [Related]
16. Trichostatin A epigenetically increases calpastatin expression and inhibits calpain activity and calcium-induced SH-SY5Y neuronal cell toxicity. Seo J; Jo SA; Hwang S; Byun CJ; Lee HJ; Cho DH; Kim D; Koh YH; Jo I FEBS J; 2013 Dec; 280(24):6691-701. PubMed ID: 24200051 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle. Gonçalves DA; Lira EC; Baviera AM; Cao P; Zanon NM; Arany Z; Bedard N; Tanksale P; Wing SS; Lecker SH; Kettelhut IC; Navegantes LC Endocrinology; 2009 Dec; 150(12):5395-404. PubMed ID: 19837877 [TBL] [Abstract][Full Text] [Related]
18. The bovine calpastatin gene promoter and a new N-terminal region of the protein are targets for cAMP-dependent protein kinase activity. Cong M; Thompson VF; Goll DE; Antin PB J Biol Chem; 1998 Jan; 273(1):660-6. PubMed ID: 9417129 [TBL] [Abstract][Full Text] [Related]
19. Four types of calpastatin isoforms with distinct amino-terminal sequences are specified by alternative first exons and differentially expressed in mouse tissues. Takano J; Watanabe M; Hitomi K; Maki M J Biochem; 2000 Jul; 128(1):83-92. PubMed ID: 10876161 [TBL] [Abstract][Full Text] [Related]
20. Differential regulation of mu- and m-calpain in rat hearts perfused with Ca2+ and cAMP. Salamino F; De Tullio R; Mengotti P; Melloni E; Pontremoli S Biochem Biophys Res Commun; 1994 Aug; 202(3):1197-203. PubMed ID: 7520236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]