These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1703282)

  • 1. Characterization of Na(+)-Ca2+ exchange activity in plasma membrane vesicles from postmortem human brain.
    Hoel G; Michaelis ML; Freed WJ; Kleinman JE
    Neurochem Res; 1990 Sep; 15(9):881-7. PubMed ID: 1703282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-Ca2+ exchange activity in synaptic plasma membranes derived from the electric organ of Torpedo ocellata.
    Tessari M; Rahamimoff H
    Biochim Biophys Acta; 1991 Jul; 1066(2):208-18. PubMed ID: 1854784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chronic alcohol administration on synaptic membrane Na+-Ca2+ exchange activity.
    Michaelis ML; Michaelis EK; Nunley EW; Galton N
    Brain Res; 1987 Jun; 414(2):239-44. PubMed ID: 3620929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modulation of rat brain Na(+)-Ca2+ exchange by K+.
    Dahan D; Spanier R; Rahamimoff H
    J Biol Chem; 1991 Feb; 266(4):2067-75. PubMed ID: 1989970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The asymmetric effect of lanthanides on Na+-gradient-dependent Ca2+ transport in synaptic plasma membrane vesicles.
    Rahamimoff H; Spanier R
    Biochim Biophys Acta; 1984 Jun; 773(2):279-89. PubMed ID: 6234024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.
    van Heeswijk MP; Geertsen JA; van Os CH
    J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes.
    Coutinho OP; Carvalho AP; Carvalho CA
    J Neurochem; 1983 Sep; 41(3):670-6. PubMed ID: 6409998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+/Ca2+ exchange activity is increased in Alzheimer's disease brain tissues.
    Colvin RA; Bennett JW; Colvin SL; Allen RA; Martinez J; Miner GD
    Brain Res; 1991 Mar; 543(1):139-47. PubMed ID: 1647256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium efflux in rat lens: Na/Ca-exchange related to cataract induced by selenite.
    Wang Z; Hess JL; Bunce GE
    Curr Eye Res; 1992 Jul; 11(7):625-32. PubMed ID: 1325893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of exchange inhibitory peptide effects on Na+/Ca2+ exchange in rat and human brain plasma membrane vesicles.
    Wu A; Colvin RA
    J Neurochem; 1994 Dec; 63(6):2136-43. PubMed ID: 7964733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of Na+ - Ca2+ antiporter and of (Na+ + K+)-ATPase into liposomes and demonstration of their non-identity.
    Eckert K; Grosse R
    Biochim Biophys Acta; 1982 Oct; 692(1):69-80. PubMed ID: 6293560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence against parallel operation of sodium/calcium antiport and ATP-driven calcium transport in plasma membrane vesicles from kidney tubule cells.
    Schönfeld W; Menke KH; Schönfeld R; Repke KR
    Biochim Biophys Acta; 1984 Mar; 770(2):183-94. PubMed ID: 6320885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, purification, and reconstitution of the Na+ gradient-dependent Ca2+ transporter (Na+-Ca2+ exchanger) from brain synaptic plasma membranes.
    Barzilai A; Spanier R; Rahamimoff H
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6521-5. PubMed ID: 6593714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-Ca2+ exchange in sarcolemmal membrane vesicles of dog mesenteric artery.
    Matlib MA
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C323-30. PubMed ID: 3421315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry of the sodium-calcium exchanger in nerve terminals.
    Barzilai A; Rahamimoff H
    Biochemistry; 1987 Sep; 26(19):6113-8. PubMed ID: 3689764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the mechanism underlying increased Na+/Ca2+ exchange activity in Alzheimer's disease brain.
    Colvin RA; Davis N; Wu A; Murphy CA; Levengood J
    Brain Res; 1994 Dec; 665(2):192-200. PubMed ID: 7895054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Na+-Ca2+ exchange process in isolated sarcolemmal membranes of mesenteric arteries from WKY and SHR rats.
    Matlib MA; Schwartz A; Yamori Y
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C166-72. PubMed ID: 2990226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles.
    Vemuri R; Philipson KD
    Biochim Biophys Acta; 1988 Jan; 937(2):258-68. PubMed ID: 3276350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.