BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17033784)

  • 1. Precursor-directed biosynthesis of 6-deoxyerythronolide B analogues is improved by removal of the initial catalytic sites of the polyketide synthase.
    Ward SL; Desai RP; Hu Z; Gramajo H; Katz L
    J Ind Microbiol Biotechnol; 2007 Jan; 34(1):9-15. PubMed ID: 17033784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemobiosynthesis of novel 6-deoxyerythronolide B analogues by mutation of the loading module of 6-deoxyerythronolide B synthase 1.
    Murli S; MacMillan KS; Hu Z; Ashley GW; Dong SD; Kealey JT; Reeves CD; Kennedy J
    Appl Environ Microbiol; 2005 Aug; 71(8):4503-9. PubMed ID: 16085842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precursor-directed biosynthesis of 6-deoxyerythronolide B analogs in Streptomyces coelicolor: understanding precursor effects.
    Leaf T; Cadapan L; Carreras C; Regentin R; Ou S; Woo E; Ashley G; Licari P
    Biotechnol Prog; 2000; 16(4):553-6. PubMed ID: 10933827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea.
    Frykman S; Leaf T; Carreras C; Licari P
    Biotechnol Bioeng; 2001 Dec; 76(4):303-10. PubMed ID: 11745157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precursor-directed biosynthesis of 16-membered macrolides by the erythromycin polyketide synthase.
    Kinoshita K; Williard PG; Khosla C; Cane DE
    J Am Chem Soc; 2001 Mar; 123(11):2495-502. PubMed ID: 11456917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining classical, genetic, and process strategies for improved precursor-directed production of 6-deoxyerythronolide B analogues.
    Desai RP; Leaf T; Hu Z; Hutchinson CR; Hong A; Byng G; Galazzo J; Licari P
    Biotechnol Prog; 2004; 20(1):38-43. PubMed ID: 14763821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharopolyspora erythraea-catalyzed bioconversion of 6-deoxyerythronolide B analogs for production of novel erythromycins.
    Carreras C; Frykman S; Ou S; Cadapan L; Zavala S; Woo E; Leaf T; Carney J; Burlingame M; Patel S; Ashley G; Licari P
    J Biotechnol; 2002 Jan; 92(3):217-28. PubMed ID: 11689246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of domains within megalomicin and erythromycin polyketide synthase modules responsible for differences in polyketide production levels in Escherichia coli.
    Murli S; Piagentini M; McDaniel R; Hutchinson CR
    Biochemistry; 2004 Dec; 43(50):15884-90. PubMed ID: 15595843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of erythromycin analogs having functional groups at C-15.
    Ashley GW; Burlingame M; Desai R; Fu H; Leaf T; Licari PJ; Tran C; Abbanat D; Bush K; Macielag M
    J Antibiot (Tokyo); 2006 Jul; 59(7):392-401. PubMed ID: 17025015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis.
    Kumpfmüller J; Methling K; Fang L; Pfeifer BA; Lalk M; Schweder T
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1209-1220. PubMed ID: 26432460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase.
    Jacobsen JR; Hutchinson CR; Cane DE; Khosla C
    Science; 1997 Jul; 277(5324):367-9. PubMed ID: 9219693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A specific role of the Saccharopolyspora erythraea thioesterase II gene in the function of modular polyketide synthases.
    Hu Z; Pfeifer BA; Chao E; Murli S; Kealey J; Carney JR; Ashley G; Khosla C; Hutchinson CR
    Microbiology (Reading); 2003 Aug; 149(Pt 8):2213-2225. PubMed ID: 12904561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 6-deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli.
    Wang Y; Pfeifer BA
    Metab Eng; 2008 Jan; 10(1):33-8. PubMed ID: 17959404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythromycin biosynthesis. Highly efficient incorporation of polyketide chain elongation intermediates into 6-deoxyerythronolide B in an engineered Streptomyces host.
    Cane DE; Luo G; Khosla C; Kao CM; Katz L
    J Antibiot (Tokyo); 1995 Jul; 48(7):647-51. PubMed ID: 7649863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxyerythronolide B in Escherichia coli.
    Lau J; Tran C; Licari P; Galazzo J
    J Biotechnol; 2004 May; 110(1):95-103. PubMed ID: 15099909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor-directed biosynthesis of 12-ethyl erythromycin.
    Jacobsen JR; Keatinge-Clay AT; Cane DE; Khosla C
    Bioorg Med Chem; 1998 Aug; 6(8):1171-7. PubMed ID: 9784859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The loading domain of the erythromycin polyketide synthase is not essential for erythromycin biosynthesis in Saccharopolyspora erythraea.
    Pereda A; Summers RG; Stassi DL; Ruan X; Katz L
    Microbiology (Reading); 1998 Feb; 144 ( Pt 2)():543-553. PubMed ID: 9493390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DEBS paradigm for type I modular polyketide synthases and beyond.
    Katz L
    Methods Enzymol; 2009; 459():113-42. PubMed ID: 19362638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-factorial engineering of heterologous polyketide production in Escherichia coli reveals complex pathway interactions.
    Boghigian BA; Zhang H; Pfeifer BA
    Biotechnol Bioeng; 2011 Jun; 108(6):1360-71. PubMed ID: 21337322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved bioconversion of 15-fluoro-6-deoxyerythronolide B to 15-fluoro-erythromycin A by overexpression of the eryK Gene in Saccharopolyspora erythraea.
    Desai RP; Rodriguez E; Galazzo JL; Licari P
    Biotechnol Prog; 2004; 20(6):1660-5. PubMed ID: 15575696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.