BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17033784)

  • 21. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB.
    Hughes AJ; Keatinge-Clay A
    Chem Biol; 2011 Feb; 18(2):165-76. PubMed ID: 21338915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production.
    Murli S; Kennedy J; Dayem LC; Carney JR; Kealey JT
    J Ind Microbiol Biotechnol; 2003 Aug; 30(8):500-9. PubMed ID: 12898389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered biosynthesis of a complete macrolactone in a heterologous host.
    Kao CM; Katz L; Khosla C
    Science; 1994 Jul; 265(5171):509-12. PubMed ID: 8036492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desmethyl-2-methoxy-6-deoxyerythronolide B.
    Kato Y; Bai L; Xue Q; Revill WP; Yu TW; Floss HG
    J Am Chem Soc; 2002 May; 124(19):5268-9. PubMed ID: 11996558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel octaketide macrolides related to 6-deoxyerythronolide B provide evidence for iterative operation of the erythromycin polyketide synthase.
    Wilkinson B; Foster G; Rudd BA; Taylor NL; Blackaby AP; Sidebottom PJ; Cooper DJ; Dawson MJ; Buss AD; Gaisser S; Böhm IU; Rowe CJ; Cortés J; Leadlay PF; Staunton J
    Chem Biol; 2000 Feb; 7(2):111-7. PubMed ID: 10662692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precursor-directed biosynthesis: biochemical basis of the remarkable selectivity of the erythromycin polyketide synthase toward unsaturated triketides.
    Cane DE; Kudo F; Kinoshita K; Khosla C
    Chem Biol; 2002 Jan; 9(1):131-42. PubMed ID: 11841945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-free synthesis of polyketides by recombinant erythromycin polyketide synthases.
    Pieper R; Luo G; Cane DE; Khosla C
    Nature; 1995 Nov; 378(6554):263-6. PubMed ID: 7477343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea.
    Gaisser S; Reather J; Wirtz G; Kellenberger L; Staunton J; Leadlay PF
    Mol Microbiol; 2000 Apr; 36(2):391-401. PubMed ID: 10792725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyketide double bond biosynthesis. Mechanistic analysis of the dehydratase-containing module 2 of the picromycin/methymycin polyketide synthase.
    Wu J; Zaleski TJ; Valenzano C; Khosla C; Cane DE
    J Am Chem Soc; 2005 Dec; 127(49):17393-404. PubMed ID: 16332089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Erythromycin biosynthesis: exploiting the catalytic versatility of the modular polyketide synthase.
    Luo G; Pieper R; Rosa A; Khosla C; Cane DE
    Bioorg Med Chem; 1996 Jul; 4(7):995-9. PubMed ID: 8831969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering broader specificity into an antibiotic-producing polyketide synthase.
    Marsden AF; Wilkinson B; Cortés J; Dunster NJ; Staunton J; Leadlay PF
    Science; 1998 Jan; 279(5348):199-202. PubMed ID: 9422686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 6-Deoxyerythronolide B analogue production in Escherichia coli through metabolic pathway engineering.
    Kennedy J; Murli S; Kealey JT
    Biochemistry; 2003 Dec; 42(48):14342-8. PubMed ID: 14640703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recombinant polyketide synthesis in Streptomyces: engineering of improved host strains.
    Ziermann R; Betlach MC
    Biotechniques; 1999 Jan; 26(1):106-10. PubMed ID: 9894599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae.
    Mutka SC; Bondi SM; Carney JR; Da Silva NA; Kealey JT
    FEMS Yeast Res; 2006 Jan; 6(1):40-7. PubMed ID: 16423069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous priming of a downstream module in 6-deoxyerythronolide B synthase leads to polyketide biosynthesis.
    Jacobsen JR; Cane DE; Khosla C
    Biochemistry; 1998 Apr; 37(14):4928-34. PubMed ID: 9538011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of a minimal modular polyketide synthase, and targeted alteration of the stereospecificity of polyketide chain extension.
    Böhm I; Holzbaur IE; Hanefeld U; Cortés J; Staunton J; Leadlay PF
    Chem Biol; 1998 Aug; 5(8):407-12. PubMed ID: 9710562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase.
    Edwards AL; Matsui T; Weiss TM; Khosla C
    J Mol Biol; 2014 May; 426(11):2229-45. PubMed ID: 24704088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initiation of polyene macrolide biosynthesis: interplay between polyketide synthase domains and modules as revealed via domain swapping, mutagenesis, and heterologous complementation.
    Heia S; Borgos SE; Sletta H; Escudero L; Seco EM; Malpartida F; Ellingsen TE; Zotchev SB
    Appl Environ Microbiol; 2011 Oct; 77(19):6982-90. PubMed ID: 21821762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase.
    Weissman KJ; Timoney M; Bycroft M; Grice P; Hanefeld U; Staunton J; Leadlay PF
    Biochemistry; 1997 Nov; 36(45):13849-55. PubMed ID: 9374862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 6-Deoxyerythronolide B synthase thioesterase-catalyzed macrocyclization is highly stereoselective.
    Pinto A; Wang M; Horsman M; Boddy CN
    Org Lett; 2012 May; 14(9):2278-81. PubMed ID: 22519860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.