BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17033808)

  • 1. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana.
    Ito H; Miura A; Takashima K; Kakutani T
    Mol Genet Genomics; 2007 Jan; 277(1):23-30. PubMed ID: 17033808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains.
    Hall SE; Kettler G; Preuss D
    Genome Res; 2003 Feb; 13(2):195-205. PubMed ID: 12566397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences.
    Kawabe A; Nasuda S; Charlesworth D
    Genetics; 2006 Dec; 174(4):2021-32. PubMed ID: 17028323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice.
    Ma J; Jackson SA
    Genome Res; 2006 Feb; 16(2):251-9. PubMed ID: 16354755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives.
    Hall SE; Luo S; Hall AE; Preuss D
    Genetics; 2005 Aug; 170(4):1913-27. PubMed ID: 15937135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cycles of satellite and transposon evolution in Arabidopsis centromeres.
    Wlodzimierz P; Rabanal FA; Burns R; Naish M; Primetis E; Scott A; Mandáková T; Gorringe N; Tock AJ; Holland D; Fritschi K; Habring A; Lanz C; Patel C; Schlegel T; Collenberg M; Mielke M; Nordborg M; Roux F; Shirsekar G; Alonso-Blanco C; Lysak MA; Novikova PY; Bousios A; Weigel D; Henderson IR
    Nature; 2023 Jun; 618(7965):557-565. PubMed ID: 37198485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic and epigenetic landscape of the
    Naish M; Alonge M; Wlodzimierz P; Tock AJ; Abramson BW; Schmücker A; Mandáková T; Jamge B; Lambing C; Kuo P; Yelina N; Hartwick N; Colt K; Smith LM; Ton J; Kakutani T; Martienssen RA; Schneeberger K; Lysak MA; Berger F; Bousios A; Michael TP; Schatz MC; Henderson IR
    Science; 2021 Nov; 374(6569):eabi7489. PubMed ID: 34762468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and genomic organization of centromeric repeats in Arabidopsis species.
    Kawabe A; Nasuda S
    Mol Genet Genomics; 2005 Feb; 272(6):593-602. PubMed ID: 15586291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation and evolution of centromeric satellite repeats in Saccharum species.
    Huang Y; Ding W; Zhang M; Han J; Jing Y; Yao W; Hasterok R; Wang Z; Wang K
    Plant J; 2021 May; 106(3):616-629. PubMed ID: 33547688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species.
    Heslop-Harrison JS; Brandes A; Schwarzacher T
    Chromosome Res; 2003; 11(3):241-53. PubMed ID: 12769291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant.
    Talbert PB; Masuelli R; Tyagi AP; Comai L; Henikoff S
    Plant Cell; 2002 May; 14(5):1053-66. PubMed ID: 12034896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
    Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J
    Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphic chromosomal specificity of centromere satellite families in Arabidopsis halleri ssp. gemmifera.
    Kawabe A; Nasuda S
    Genetica; 2006 Mar; 126(3):335-42. PubMed ID: 16636927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.
    Sharma S; Raina SN
    Cytogenet Genome Res; 2005; 109(1-3):15-26. PubMed ID: 15753554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.
    Plohl M; Luchetti A; Mestrović N; Mantovani B
    Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant centromere organization: a dynamic structure with conserved functions.
    Ma J; Wing RA; Bennetzen JL; Jackson SA
    Trends Genet; 2007 Mar; 23(3):134-9. PubMed ID: 17275131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How diverse a monocentric chromosome can be? Repeatome and centromeric organization of Juncus effusus (Juncaceae).
    Dias Y; Mata-Sucre Y; Thangavel G; Costa L; Báez M; Houben A; Marques A; Pedrosa-Harand A
    Plant J; 2024 Jun; 118(6):1832-1847. PubMed ID: 38461471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana.
    Shibata F; Murata M
    J Cell Sci; 2004 Jun; 117(Pt 14):2963-70. PubMed ID: 15161939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae.
    Ávila Robledillo L; Neumann P; Koblížková A; Novák P; Vrbová I; Macas J
    Mol Biol Evol; 2020 Aug; 37(8):2341-2356. PubMed ID: 32259249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification and adaptation of centromeric repeats in polyploid switchgrass species.
    Yang X; Zhao H; Zhang T; Zeng Z; Zhang P; Zhu B; Han Y; Braz GT; Casler MD; Schmutz J; Jiang J
    New Phytol; 2018 Jun; 218(4):1645-1657. PubMed ID: 29577299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.