These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 1703399)

  • 1. Conjugation of bleomycin with concanavalin A or immunoglobulin G increases its ability to destroy cell membranes.
    Voznesensky AI; Galanova JV; Shkrob AM; Mathanov IE; Archakov AI
    Arch Biochem Biophys; 1990 Dec; 283(2):519-22. PubMed ID: 1703399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent binding of bleomycin to concanavalin A and immunoglobulin G enhances the ability of the bleomycin-Fe(II) complex to destroy the erythrocyte membrane.
    Voznesenskii AI; Galanova YuV ; Archakov AI
    Biomed Sci; 1991; 2(2):147-50. PubMed ID: 1723008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxic effect of free bleomycin A5-iron (II) complex and its conjugates with concanavalin A, insulin and calcitonin on mouse thymocytes.
    Matkhanov IE; Galanova YuV ; Voschinnikov EI; Archakov AI
    Biochem Biophys Res Commun; 1993 Nov; 197(1):85-91. PubMed ID: 7504486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bleomycin cytotoxicity is prevented by superoxide dismutase in vitro.
    Cunningham ML; Ringrose PS; Lokesh BR
    Cancer Lett; 1983 Dec; 21(2):149-53. PubMed ID: 6197159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and effective method for hemolysis with a hypoxanthine-xanthine oxidase system and alteration of erythrocyte phospholipid composition during the hemolysis.
    Taniguchi M; Aikawa M; Sakagami T
    J Biochem; 1981 Mar; 89(3):795-800. PubMed ID: 6895220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amelioration of glucose induced hemolysis of human erythrocytes by vitamin E.
    Marar T
    Chem Biol Interact; 2011 Sep; 193(2):149-53. PubMed ID: 21736874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of copper chloride with erythrocyte membrane as a source of activated oxygen species. A chemiluminescent study.
    Ribarov SR; Bochev PG
    Gen Physiol Biophys; 1984 Oct; 3(5):431-5. PubMed ID: 6096204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemolysis of human erythrocytes by paraquat in relation to superoxide dismutase activity.
    Kobayashi Y; Okahata S; Usui T
    Biochem Biophys Res Commun; 1979 Dec; 91(4):1288-94. PubMed ID: 230840
    [No Abstract]   [Full Text] [Related]  

  • 10. Interaction of paramyxoviruses with concanavalin A-modified erythrocyte membranes.
    Yamamoto K; Inoue K
    Virology; 1978 Jan; 84(1):203-6. PubMed ID: 619488
    [No Abstract]   [Full Text] [Related]  

  • 11. Superoxide and hydrogen peroxide-dependent lipid peroxidation in intact and triton-dispersed erythrocyte membranes.
    Girotti AW; Thomas JP
    Biochem Biophys Res Commun; 1984 Jan; 118(2):474-80. PubMed ID: 6322749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Up-regulation of antioxidant enzymes and coenzyme Q(10) in a human oral cancer cell line with acquired bleomycin resistance.
    Yen HC; Li SH; Majima HJ; Huang YH; Chen CP; Liu CC; Tu YC; Chen CW
    Free Radic Res; 2011 Jun; 45(6):707-16. PubMed ID: 21486114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of hemolysis of human erythrocytes exposed to monosodium urate monohydrate crystals. Preliminary characterization of membrane pores.
    Jackson JK; Winternitz CI; Burt HM
    Biochim Biophys Acta; 1996 May; 1281(1):45-52. PubMed ID: 8652603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lectin-dependent neutrophil-mediated cytotoxicity against chicken erythrocytes: a model of non-myeloperoxidase-mediated oxygen-dependent killing by human neutrophils.
    Greene WH; Colclough L; Anton A; Root RK
    J Immunol; 1980 Dec; 125(6):2727-34. PubMed ID: 6253570
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition of Sendai virus-induced hemolysis by concanavalin A.
    Toyama S; Toyama S; Uetake H
    Virology; 1978 May; 86(1):138-47. PubMed ID: 208244
    [No Abstract]   [Full Text] [Related]  

  • 16. Free radical-mediated pre-hemolytic injury in human red blood cells subjected to lead acetate as evaluated by chemiluminescence.
    Casado MF; Cecchini AL; Simão AN; Oliveira RD; Cecchini R
    Food Chem Toxicol; 2007 Jun; 45(6):945-52. PubMed ID: 17250942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of phenobarbital, morphine and ethanol on the physico-chemical properties of erythrocyte membranes].
    Matiushin AI
    Farmakol Toksikol; 1976; 39(3):301-4. PubMed ID: 1026512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations on the mechanism of the oxygen/dialuric acid-induced hemolysis of vitamin e-deficient rat red blood cells and the protective roles of catalase and superoxide dismutase.
    Fee JA; Bergamini R; Briggs RG
    Arch Biochem Biophys; 1975 Jul; 169(1):160-7. PubMed ID: 168815
    [No Abstract]   [Full Text] [Related]  

  • 19. Bleomycin-dependent damage to the bases in DNA is a minor side reaction.
    Gajewski E; Aruoma OI; Dizdaroglu M; Halliwell B
    Biochemistry; 1991 Mar; 30(9):2444-8. PubMed ID: 1705818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte membrane protein damage by oxidation products of phenylhydrazine.
    Chakrabarti S; Sonaye B; Naik AA; Nadkarni PP
    Biochem Mol Biol Int; 1995 Feb; 35(2):255-63. PubMed ID: 7663379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.