These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 17034190)

  • 61. Cheating the diffraction limit: electrodeposited nanowires patterned by photolithography.
    Xiang C; Yang Y; Penner RM
    Chem Commun (Camb); 2009 Feb; (8):859-73. PubMed ID: 19214304
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Defect-pit-assisted growth of GaN nanostructures: nanowires, nanorods and nanobelts.
    Xue S; Zhang X; Huang R; Zhuang H; Xue C
    Dalton Trans; 2008 Aug; (32):4296-302. PubMed ID: 18682869
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electron-conduction properties of Fe-Al alloy nanowires.
    Li H; Liew KM; Zhang XQ; Zhang JX; Liu XF; Bian XF
    J Phys Chem B; 2008 Dec; 112(49):15588-95. PubMed ID: 19367947
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant.
    Xu J; Hu J; Peng C; Liu H; Hu Y
    J Colloid Interface Sci; 2006 Jun; 298(2):689-93. PubMed ID: 16414058
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Controlled self-assembly of functional metal octaethylporphyrin 1 D nanowires by solution-phase precipitative method.
    So MH; Roy VA; Xu ZX; Chui SS; Yuen MY; Ho CM; Che CM
    Chem Asian J; 2008 Nov; 3(11):1968-78. PubMed ID: 18767102
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Single-crystalline ZnO nanowire bundles: synthesis, mechanism and their application in dielectric composites.
    Wang G; Deng Y; Guo L
    Chemistry; 2010 Sep; 16(33):10220-5. PubMed ID: 20589828
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A simple route to porous ZnO and ZnCdO nanowires.
    Shan CX; Liu Z; Zhang ZZ; Shen DZ; Hark SK
    J Phys Chem B; 2006 Jun; 110(23):11176-9. PubMed ID: 16771380
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties.
    Morber JR; Ding Y; Haluska MS; Li Y; Liu JP; Wang ZL; Snyder RL
    J Phys Chem B; 2006 Nov; 110(43):21672-9. PubMed ID: 17064124
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis and characterization of cadmium telluride nanowire.
    Kum MC; Yoo BY; Rheem YW; Bozhilov KN; Chen W; Mulchandani A; Myung NV
    Nanotechnology; 2008 Aug; 19(32):325711. PubMed ID: 21828833
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates.
    Kuo CL; Huang MH
    Nanotechnology; 2008 Apr; 19(15):155604. PubMed ID: 21825618
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Growth of Au/Ag nanowires in thin surfactant solution films: an electron microscopy study.
    Krichevski O; Levi-Kalisman Y; Szwarcman D; Lereah Y; Markovich G
    J Colloid Interface Sci; 2007 Oct; 314(1):304-9. PubMed ID: 17574563
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures.
    Lee JS; Brittman S; Yu D; Park H
    J Am Chem Soc; 2008 May; 130(19):6252-8. PubMed ID: 18402451
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synthesis of La0.6Nd0.2Na0.2MnO3 nanowire and its magnetism.
    Lai SH; Wang TF; Lan MD
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2070-4. PubMed ID: 21449351
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Template-Assisted Iron Nanowire Formation at Different Electrolyte Temperatures.
    Kac M; Mis A; Dubiel B; Kowalski K; Zarzycki A; Dobosz I
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361274
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors.
    Wang G; Wang Q; Lu W; Li J
    J Phys Chem B; 2006 Nov; 110(43):22029-34. PubMed ID: 17064173
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy.
    Lu LM; Zhang L; Qu FL; Lu HX; Zhang XB; Wu ZS; Huan SY; Wang QA; Shen GL; Yu RQ
    Biosens Bioelectron; 2009 Sep; 25(1):218-23. PubMed ID: 19632823
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation.
    Joshi UA; Yoon S; Baik S; Lee JS
    J Phys Chem B; 2006 Jun; 110(25):12249-56. PubMed ID: 16800545
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication and characterization of single-crystalline ZnTe nanowire arrays.
    Li L; Yang Y; Huang X; Li G; Zhang L
    J Phys Chem B; 2005 Jun; 109(25):12394-8. PubMed ID: 16852533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.