These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17034205)

  • 21. Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures.
    Zhou X; Zhang D; Zhu Y; Shen Y; Guo X; Ding W; Chen Y
    J Phys Chem B; 2006 Dec; 110(51):25734-9. PubMed ID: 17181214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites.
    Zhang T; Dong W; Keeter-Brewer M; Konar S; Njabon RN; Tian ZR
    J Am Chem Soc; 2006 Aug; 128(33):10960-8. PubMed ID: 16910693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A facile shape-selective growth of ZnO nanotips and graded nanowires from its oriented nanorods in a saturated ZnS solution.
    Wang J; Luo HF; Chen T; Yuan ZH
    Nanotechnology; 2010 Dec; 21(50):505603. PubMed ID: 21098948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexagonal and prismatic nanowalled ZnO microboxes.
    Zhao F; Lin W; Wu M; Xu N; Yang X; Tian ZR; Su Q
    Inorg Chem; 2006 Apr; 45(8):3256-60. PubMed ID: 16602782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures.
    Kuo CL; Kuo TJ; Huang MH
    J Phys Chem B; 2005 Nov; 109(43):20115-21. PubMed ID: 16853600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications.
    Yuan J; Choo ES; Tang X; Sheng Y; Ding J; Xue J
    Nanotechnology; 2010 May; 21(18):185606. PubMed ID: 20388976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrothermally grown ZnO nanostructures on few-layer graphene sheets.
    Kim YJ; Hadiyawarman ; Yoon A; Kim M; Yi GC; Liu C
    Nanotechnology; 2011 Jun; 22(24):245603. PubMed ID: 21508449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy.
    Yan C; Xue D
    J Phys Chem B; 2006 Dec; 110(51):25850-5. PubMed ID: 17181231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids.
    Wang L; Chang L; Zhao B; Yuan Z; Shao G; Zheng W
    Inorg Chem; 2008 Mar; 47(5):1443-52. PubMed ID: 18201081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios.
    Cheng B; Samulski ET
    Chem Commun (Camb); 2004 Apr; (8):986-7. PubMed ID: 15069507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route.
    Wang Z; Qian XF; Yin J; Zhu ZK
    Langmuir; 2004 Apr; 20(8):3441-8. PubMed ID: 15875880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laser-assisted hydrothermal growth of size-controlled ZnO nanorods for sensing applications.
    Henley SJ; Fryar J; Jayawardena KD; Silva SR
    Nanotechnology; 2010 Sep; 21(36):365502. PubMed ID: 20702931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods.
    Ortega Y; Dieker Ch; Jäger W; Piqueras J; Fernández P
    Nanotechnology; 2010 Jun; 21(22):225604. PubMed ID: 20453289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ZnO hierarchical nanostructures: simple solvothermal synthesis and growth mechanism.
    Dev A; Kar S; Chaudhuri S
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4506-13. PubMed ID: 19049048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc oxide nanostructures: morphology derivation and evolution.
    Ye C; Fang X; Hao Y; Teng X; Zhang L
    J Phys Chem B; 2005 Oct; 109(42):19758-65. PubMed ID: 16853555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology-dependent gas-sensing properties of ZnO nanostructures for chlorophenol.
    Li Z; Pan W; Zhang D; Zhan J
    Chem Asian J; 2010 Aug; 5(8):1854-9. PubMed ID: 20540068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patterned growth of ZnO nanostructures based on the templation of plant cell walls.
    Cheng CL; Chen CC; Lin HY; Chen TT; Liou SC; Chu MW; Chen RS; Chen YF
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6344-8. PubMed ID: 19205204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals.
    Fan FR; Ding Y; Liu DY; Tian ZQ; Wang ZL
    J Am Chem Soc; 2009 Sep; 131(34):12036-7. PubMed ID: 19663440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.