BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17034219)

  • 1. Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes.
    Chang G; Oyama M; Hirao K
    J Phys Chem B; 2006 Oct; 110(41):20362-8. PubMed ID: 17034219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ chemical reductive growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications.
    Chang G; Oyama M; Hirao K
    J Phys Chem B; 2006 Feb; 110(4):1860-5. PubMed ID: 16471756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach.
    Chang G; Zhang J; Oyama M; Hirao K
    J Phys Chem B; 2005 Jan; 109(3):1204-9. PubMed ID: 16851082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces.
    Abdelmoti LG; Zamborini FP
    Langmuir; 2010 Aug; 26(16):13511-21. PubMed ID: 20695598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gold nanoparticle and electrode surface properties on electrocatalytic silver deposition for electrochemical DNA hybridization detection.
    Lee TM; Cai H; Hsing IM
    Analyst; 2005 Mar; 130(3):364-9. PubMed ID: 15724166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fullerene C60 modified gold electrode and nanogold modified indium tin oxide electrode for prednisolone determination.
    Goyal RN; Oyama M; Bachheti N; Singh SP
    Bioelectrochemistry; 2009 Feb; 74(2):272-7. PubMed ID: 19028444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular interactions and structure of a supramolecular arrangement of glucose oxidase and palladium nanoparticles.
    Pereira AR; Iost RM; Martins MV; Yokomizo CH; da Silva WC; Nantes IL; Crespilho FN
    Phys Chem Chem Phys; 2011 Jul; 13(26):12155-62. PubMed ID: 21643578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical preparation and structural characterization of platinum thin film on a polypyrrole film modified ITO electrode.
    Tian L; Qi Y; Wang B
    J Colloid Interface Sci; 2009 May; 333(1):249-53. PubMed ID: 19217116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of indium-tin oxide electrodes with thiophene copolymer thin films: optimizing electron transfer to solution probe molecules.
    Marrikar FS; Brumbach M; Evans DH; Lebrón-Paler A; Pemberton JE; Wysocki RJ; Armstrong NR
    Langmuir; 2007 Jan; 23(3):1530-42. PubMed ID: 17241084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte.
    Ivanova OS; Zamborini FP
    Anal Chem; 2010 Jul; 82(13):5844-50. PubMed ID: 20527732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient heterogeneous catalytic hydrogenation of acetone to isopropanol on semihollow and porous palladium nanocatalyst.
    Balouch A; Ali Umar A; Shah AA; Mat Salleh M; Oyama M
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9843-9. PubMed ID: 24025235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrooxidation of catecholamines at carbon nanotube-modified indium tin oxide electrodes.
    Lin KW; Lin CH; Hsieh YZ
    Anal Chim Acta; 2008 Jun; 619(1):49-53. PubMed ID: 18539173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations.
    Maldonado S; Smith TJ; Williams RD; Morin S; Barton E; Stevenson KJ
    Langmuir; 2006 Mar; 22(6):2884-91. PubMed ID: 16519499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface composition and electrical and electrochemical properties of freshly deposited and acid-etched indium tin oxide electrodes.
    Brumbach M; Veneman PA; Marrikar FS; Schulmeyer T; Simmonds A; Xia W; Lee P; Armstrong NR
    Langmuir; 2007 Oct; 23(22):11089-99. PubMed ID: 17880253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrocene functional polymer brushes on indium tin oxide via surface-initiated atom transfer radical polymerization.
    Kim BY; Ratcliff EL; Armstrong NR; Kowalewski T; Pyun J
    Langmuir; 2010 Feb; 26(3):2083-92. PubMed ID: 19968255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetoresistance and microstructure of magnetite nanocrystals dispersed in indium-tin oxide thin films.
    Okada K; Kohiki S; Mitome M; Tanaka H; Arai M; Mito M; Deguchi H
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1893-8. PubMed ID: 20355811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode.
    Li Y; Shi G
    J Phys Chem B; 2005 Dec; 109(50):23787-93. PubMed ID: 16375362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent electrochemical oxidation of silver nanoparticles.
    Ivanova OS; Zamborini FP
    J Am Chem Soc; 2010 Jan; 132(1):70-2. PubMed ID: 20000318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.