These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 17034244)
1. Aggregation of antifreeze protein and impact on antifreeze activity. Du N; Liu XY; Hew CL J Phys Chem B; 2006 Oct; 110(41):20562-7. PubMed ID: 17034244 [TBL] [Abstract][Full Text] [Related]
2. Modified Langmuir isotherm for a two-domain adsorbate: derivation and application to antifreeze proteins. Can O; Holland NB J Colloid Interface Sci; 2009 Jan; 329(1):24-30. PubMed ID: 18945440 [TBL] [Abstract][Full Text] [Related]
3. Understanding the mechanism of ice binding by type III antifreeze proteins. Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099 [TBL] [Abstract][Full Text] [Related]
4. Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. Takamichi M; Nishimiya Y; Miura A; Tsuda S FEBS J; 2007 Dec; 274(24):6469-76. PubMed ID: 18028424 [TBL] [Abstract][Full Text] [Related]
5. Ice nucleation inhibition: mechanism of antifreeze by antifreeze protein. Du N; Liu XY; Hew CL J Biol Chem; 2003 Sep; 278(38):36000-4. PubMed ID: 12829706 [TBL] [Abstract][Full Text] [Related]
6. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. DeLuca CI; Davies PL; Ye Q; Jia Z J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928 [TBL] [Abstract][Full Text] [Related]
7. Solid-state NMR on a type III antifreeze protein in the presence of ice. Siemer AB; McDermott AE J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456 [TBL] [Abstract][Full Text] [Related]
8. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Garnham CP; Natarajan A; Middleton AJ; Kuiper MJ; Braslavsky I; Davies PL Biochemistry; 2010 Oct; 49(42):9063-71. PubMed ID: 20853841 [TBL] [Abstract][Full Text] [Related]
9. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359 [TBL] [Abstract][Full Text] [Related]
10. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Kristiansen E; Zachariassen KE Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290 [TBL] [Abstract][Full Text] [Related]
11. Formation of ice-like water structure on the surface of an antifreeze protein. Smolin N; Daggett V J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of the type III antifreeze protein action: a computational study. Yang C; Sharp KA Biophys Chem; 2004 Apr; 109(1):137-48. PubMed ID: 15059666 [TBL] [Abstract][Full Text] [Related]
13. The effect of surface charge on the thermal stability and ice recrystallization inhibition activity of antifreeze protein III (AFP III). Deller RC; Carter BM; Zampetakis I; Scarpa F; Perriman AW Biochem Biophys Res Commun; 2018 Jan; 495(1):1055-1060. PubMed ID: 29137985 [TBL] [Abstract][Full Text] [Related]
14. Activity of short segments of Type I antifreeze protein. Kun H; Mastai Y Biopolymers; 2007; 88(6):807-14. PubMed ID: 17868093 [TBL] [Abstract][Full Text] [Related]
15. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related]
16. High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Modig K; Qvist J; Marshall CB; Davies PL; Halle B Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761 [TBL] [Abstract][Full Text] [Related]
17. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. Howard EI; Blakeley MP; Haertlein M; Petit-Haertlein I; Mitschler A; Fisher SJ; Cousido-Siah A; Salvay AG; Popov A; Muller-Dieckmann C; Petrova T; Podjarny A J Mol Recognit; 2011; 24(4):724-32. PubMed ID: 21472814 [TBL] [Abstract][Full Text] [Related]
18. Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. Garnham CP; Nishimiya Y; Tsuda S; Davies PL FEBS Lett; 2012 Nov; 586(21):3876-81. PubMed ID: 23017208 [TBL] [Abstract][Full Text] [Related]
19. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study. Maddah M; Maddah M; Peyvandi K Phys Chem Chem Phys; 2019 Oct; 21(39):21836-21846. PubMed ID: 31552400 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts. Daley ME; Graether SP; Sykes BD Biochemistry; 2004 Oct; 43(41):13012-7. PubMed ID: 15476394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]