These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17034307)

  • 1. Inhaled particle deposition in unsteady-state respiratory flow at a numerically constructed model of the human larynx.
    Takano H; Nishida N; Itoh M; Hyo N; Majima Y
    J Aerosol Med; 2006; 19(3):314-28. PubMed ID: 17034307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics.
    Xi J; Si X; Zhou Y; Kim J; Berlinski A
    Respir Care; 2014 Feb; 59(2):263-73. PubMed ID: 23821760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods.
    Farkas A; Balásházy I; Szocs K
    J Aerosol Med; 2006; 19(3):329-43. PubMed ID: 17034308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the human oropharyngeal airspaces using magnetic resonance imaging. III. The effects of device resistance with forced maneuver and tidal breathing on upper airway geometry.
    McRobbie DW; Pritchard SE
    J Aerosol Med; 2005; 18(3):325-36. PubMed ID: 16181007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow and particle deposition patterns in a realistic human double bifurcation airway model.
    Choi LT; Tu JY; Li HF; Thien F
    Inhal Toxicol; 2007 Feb; 19(2):117-31. PubMed ID: 17169859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerosol deposition in the upper airways of a child.
    de Jongh FH; Rinkel MJ; Hoeijmakers HW
    J Aerosol Med; 2006; 19(3):279-89. PubMed ID: 17034304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the facial interface on inhalation and deposition of micrometer particles in calm air in a child airway model.
    Xi J; Kim J; Si XA; Su WC; Zhou Y
    Inhal Toxicol; 2014 Jul; 26(8):492-505. PubMed ID: 24987981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.
    Isaacs KK; Schlesinger RB; Martonen TB
    J Aerosol Med; 2006; 19(3):344-52. PubMed ID: 17034309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model.
    Xu XY; Ni SJ; Fu M; Zheng X; Luo N; Weng WG
    J Therm Biol; 2017 Dec; 70(Pt A):53-63. PubMed ID: 29074026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway.
    Farhadi Ghalati P; Keshavarzian E; Abouali O; Faramarzi A; Tu J; Shakibafard A
    Comput Biol Med; 2012 Jan; 42(1):39-49. PubMed ID: 22061046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple mechanistic model of deposition of water-soluble aerosol particles in the mouth and throat.
    Mitsakou C; Mitrakos D; Neofytou P; Housiadas C
    J Aerosol Med; 2007; 20(4):519-29. PubMed ID: 18158723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inspiratory and expiratory aerosol deposition in the upper airway.
    Verbanck S; Kalsi HS; Biddiscombe MF; Agnihotri V; Belkassem B; Lacor C; Usmani OS
    Inhal Toxicol; 2011 Feb; 23(2):104-11. PubMed ID: 21309663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of SPECT aerosol deposition data with a human respiratory tract model.
    Fleming JS; Epps BP; Conway JH; Martonen TB
    J Aerosol Med; 2006; 19(3):268-78. PubMed ID: 17034303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics.
    Perkins EL; Basu S; Garcia GJM; Buckmire RA; Shah RN; Kimbell JS
    Otolaryngol Head Neck Surg; 2018 Mar; 158(3):511-519. PubMed ID: 29160160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental method for measuring aerosol deposition efficiency in the human oral airway.
    Cheng KH; Cheng YS; Yeh HC; Swift DL
    Am Ind Hyg Assoc J; 1997 Mar; 58(3):207-13. PubMed ID: 9075311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model.
    Schroeter JD; Kimbell JS; Asgharian B
    J Aerosol Med; 2006; 19(3):301-13. PubMed ID: 17034306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.