These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 17034307)
21. Deposition of inhaled particulate matter in the upper respiratory tract, larynx, and bronchial airways: a mathematical description. Martonen T J Toxicol Environ Health; 1983; 12(4-6):787-800. PubMed ID: 6668624 [TBL] [Abstract][Full Text] [Related]
22. Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult. Xi J; Berlinski A; Zhou Y; Greenberg B; Ou X Ann Biomed Eng; 2012 Dec; 40(12):2579-95. PubMed ID: 22660850 [TBL] [Abstract][Full Text] [Related]
23. A theory of predicting respiratory tract deposition of inhaled particles in man. Yu CP; Taulbee DB Inhaled Part; 1975 Sep; 4 Pt 1():35-47. PubMed ID: 1236168 [TBL] [Abstract][Full Text] [Related]
24. Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat. Zhang Y; Finlay WH J Aerosol Med; 2005; 18(4):460-73. PubMed ID: 16379621 [TBL] [Abstract][Full Text] [Related]
25. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Rahimi-Gorji M; Gorji TB; Gorji-Bandpy M Comput Biol Med; 2016 Jul; 74():1-17. PubMed ID: 27160637 [TBL] [Abstract][Full Text] [Related]
26. Assessing sinus aerosol deposition: benefits of SPECT-CT imaging. Leclerc L; Pourchez J; Prevot N; Vecellio L; Le Guellec S; Cottier M; Durand M Int J Pharm; 2014 Feb; 462(1-2):135-41. PubMed ID: 24374606 [TBL] [Abstract][Full Text] [Related]
27. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge. Koullapis PG; Kassinos SC; Bivolarova MP; Melikov AK J Biomech; 2016 Jul; 49(11):2201-2212. PubMed ID: 26806688 [TBL] [Abstract][Full Text] [Related]
28. Numerical study of the effects of bronchial structural abnormalities on respiratory flow distribution. Yu S; Wang J; Sun X; Liu Y Biomed Eng Online; 2016 Dec; 15(Suppl 2):164. PubMed ID: 28155703 [TBL] [Abstract][Full Text] [Related]
29. An in vitro study on the deposition of micrometer-sized particles in the extrathoracic airways of adults during tidal oral breathing. Golshahi L; Noga ML; Vehring R; Finlay WH Ann Biomed Eng; 2013 May; 41(5):979-89. PubMed ID: 23358802 [TBL] [Abstract][Full Text] [Related]
30. Thoracic fraction of inhaled fiber aerosol. Cheng YS; Su WC J Occup Environ Hyg; 2013; 10(4):194-202. PubMed ID: 23414241 [TBL] [Abstract][Full Text] [Related]
31. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Xi J; Longest PW Ann Biomed Eng; 2007 Apr; 35(4):560-81. PubMed ID: 17237991 [TBL] [Abstract][Full Text] [Related]
32. Targeted drug delivery with polydisperse particle transport and deposition in patient-specific upper airway during inhalation and exhalation. Biglarian M; MomeniLarimi M; Firoozabadi B; Inthavong K; Farnoud A Respir Physiol Neurobiol; 2023 Feb; 308():103986. PubMed ID: 36396028 [TBL] [Abstract][Full Text] [Related]
33. Phase-contrast helium-3 MRI of aerosol deposition in human airways. Sarracanie M; Grebenkov D; Sandeau J; Coulibaly S; Martin AR; Hill K; Pérez Sánchez JM; Fodil R; Martin L; Durand E; Caillibotte G; Isabey D; Darrasse L; Bittoun J; Maître X NMR Biomed; 2015 Feb; 28(2):180-7. PubMed ID: 25476994 [TBL] [Abstract][Full Text] [Related]
34. The Sophia Anatomical Infant Nose-Throat (Saint) model: a valuable tool to study aerosol deposition in infants. Janssens HM; de Jongste JC; Fokkens WJ; Robben SG; Wouters K; Tiddens HA J Aerosol Med; 2001; 14(4):433-41. PubMed ID: 11791684 [TBL] [Abstract][Full Text] [Related]
35. A new method of reconstructing the human laryngeal architecture using micro-MRI. Chen T; Chodara AM; Sprecher AJ; Fang F; Song W; Tao C; Jiang JJ J Voice; 2012 Sep; 26(5):555-62. PubMed ID: 21816571 [TBL] [Abstract][Full Text] [Related]
36. [Simulation research on the movement and deposition of inhalational particles in the human respiratory tract]. Yin JJ; Ning Z; Fu J; Lu XZ Huan Jing Ke Xue; 2010 Jul; 31(7):1476-82. PubMed ID: 20825013 [TBL] [Abstract][Full Text] [Related]
37. Anatomy matters: The role of the subject-specific respiratory tract on aerosol deposition - A CFD study. Wedel J; Steinmann P; Štrakl M; Hriberšek M; Cui Y; Ravnik J Comput Methods Appl Mech Eng; 2022 Nov; 401():115372. PubMed ID: 35919629 [TBL] [Abstract][Full Text] [Related]
38. Visualization of flow resistance in physiological nasal respiration: analysis of velocity and vorticities using numerical simulation. Ishikawa S; Nakayama T; Watanabe M; Matsuzawa T Arch Otolaryngol Head Neck Surg; 2006 Nov; 132(11):1203-9. PubMed ID: 17116815 [TBL] [Abstract][Full Text] [Related]
39. Effects of vocal fold lesions on particle deposition in a mouth-throat model: A numerical study. Yu P; Xue C; Rosenthal J; Jiang JJ Auris Nasus Larynx; 2024 Feb; 51(1):120-124. PubMed ID: 37164816 [TBL] [Abstract][Full Text] [Related]
40. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. van Ertbruggen C; Hirsch C; Paiva M J Appl Physiol (1985); 2005 Mar; 98(3):970-80. PubMed ID: 15501925 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]