These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 17034309)

  • 21. Unsteady-state airflow and particle deposition in a three-generation human lung geometry.
    Nazridoust K; Asgharian B
    Inhal Toxicol; 2008 Apr; 20(6):595-610. PubMed ID: 18444012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model.
    Schroeter JD; Kimbell JS; Asgharian B
    J Aerosol Med; 2006; 19(3):301-13. PubMed ID: 17034306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional computer modeling of the human upper respiratory tract.
    Martonen TB; Zhang Z; Yu G; Musante CJ
    Cell Biochem Biophys; 2001; 35(3):255-61. PubMed ID: 11894845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Models of Inhalation Therapy in Early Childhood: Therapeutic Aerosols in the Developing Acinus.
    Katan JT; Hofemeier P; Sznitman J
    J Aerosol Med Pulm Drug Deliv; 2016 Jun; 29(3):288-98. PubMed ID: 26907858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of local deposition patterns of inhaled radon decay products in human bronchial airway bifurcations.
    Balásházy I; Hofmann W
    Health Phys; 2000 Feb; 78(2):147-58. PubMed ID: 10647981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detailed mathematical description of the geometry of airway bifurcations.
    Hegedus CJ; Balásházy I; Farkas A
    Respir Physiol Neurobiol; 2004 Jul; 141(1):99-114. PubMed ID: 15234679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern.
    Sosnowski TR; Moskal A; Gradoń L
    Inhal Toxicol; 2006 Sep; 18(10):773-80. PubMed ID: 16774866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of SPECT aerosol deposition data with a human respiratory tract model.
    Fleming JS; Epps BP; Conway JH; Martonen TB
    J Aerosol Med; 2006; 19(3):268-78. PubMed ID: 17034303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and deposition of ultrafine particles in the upper tracheobronchial tree: a comparative study between approximate and realistic respiratory tract models.
    Dong J; Li J; Tian L; Tu J
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1125-1135. PubMed ID: 33410725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional fluid particle trajectories in the human larynx and trachea.
    Katz IM; Martonen TB
    J Aerosol Med; 1996; 9(4):513-20. PubMed ID: 10163665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.
    Kolanjiyil AV; Kleinstreuer C
    Comput Biol Med; 2016 Dec; 79():193-204. PubMed ID: 27810625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of enhanced condensational growth (ECG) for controlled respiratory drug delivery in a mouth-throat and upper tracheobronchial model.
    Hindle M; Longest PW
    Pharm Res; 2010 Sep; 27(9):1800-11. PubMed ID: 20454837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hood nebulization: effects of head direction and breathing mode on particle inhalability and deposition in a 7-month-old infant model.
    Kim J; Xi J; Si X; Berlinski A; Su WC
    J Aerosol Med Pulm Drug Deliv; 2014 Jun; 27(3):209-18. PubMed ID: 23808762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational analysis of radon progeny deposition patterns in the human respiratory system.
    Rabi R; Oufni L; Kayouh N
    J Environ Radioact; 2024 Feb; 272():107365. PubMed ID: 38171111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges in validating CFD-derived inhaled aerosol deposition predictions.
    Oldham MJ
    Inhal Toxicol; 2006 Sep; 18(10):781-6. PubMed ID: 16774867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 40. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.