These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 17034582)
1. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Morgan BP; Chamberlain-Banoub J; Neal JW; Song W; Mizuno M; Harris CL Clin Exp Immunol; 2006 Nov; 146(2):294-302. PubMed ID: 17034582 [TBL] [Abstract][Full Text] [Related]
2. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Chamberlain-Banoub J; Neal JW; Mizuno M; Harris CL; Morgan BP Clin Exp Immunol; 2006 Nov; 146(2):278-86. PubMed ID: 17034580 [TBL] [Abstract][Full Text] [Related]
5. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis. Tüzün E; Saini SS; Morgan BP; Christadoss P J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125 [TBL] [Abstract][Full Text] [Related]
6. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. Tüzün E; Scott BG; Goluszko E; Higgs S; Christadoss P J Immunol; 2003 Oct; 171(7):3847-54. PubMed ID: 14500686 [TBL] [Abstract][Full Text] [Related]
7. Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia. Kaminski HJ; Kusner LL; Richmonds C; Medof ME; Lin F Exp Neurol; 2006 Dec; 202(2):287-93. PubMed ID: 16859686 [TBL] [Abstract][Full Text] [Related]
8. Immunoregulation in experimental autoimmune myasthenia gravis--about T cells, antibodies, and endplates. De Baets M; Stassen M; Losen M; Zhang X; Machiels B Ann N Y Acad Sci; 2003 Sep; 998():308-17. PubMed ID: 14592888 [TBL] [Abstract][Full Text] [Related]
10. Myasthenia gravis: the role of complement at the neuromuscular junction. Howard JF Ann N Y Acad Sci; 2018 Jan; 1412(1):113-128. PubMed ID: 29266249 [TBL] [Abstract][Full Text] [Related]
11. Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. Lin F; Kaminski HJ; Conti-Fine BM; Wang W; Richmonds C; Medof ME J Clin Invest; 2002 Nov; 110(9):1269-74. PubMed ID: 12417565 [TBL] [Abstract][Full Text] [Related]
16. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis. Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908 [TBL] [Abstract][Full Text] [Related]
17. Enhanced complement activation and MAC formation accelerates severe COVID-19. Ellsworth CR; Chen Z; Xiao MT; Qian C; Wang C; Khatun MS; Liu S; Islamuddin M; Maness NJ; Halperin JA; Blair RV; Kolls JK; Tomlinson S; Qin X Cell Mol Life Sci; 2024 Sep; 81(1):405. PubMed ID: 39284944 [TBL] [Abstract][Full Text] [Related]
18. Respective roles of decay-accelerating factor and CD59 in circumventing glomerular injury in acute nephrotoxic serum nephritis. Lin F; Salant DJ; Meyerson H; Emancipator S; Morgan BP; Medof ME J Immunol; 2004 Feb; 172(4):2636-42. PubMed ID: 14764738 [TBL] [Abstract][Full Text] [Related]
19. The role of complement in experimental autoimmune myasthenia gravis. Kusner LL; Kaminski HJ Ann N Y Acad Sci; 2012 Dec; 1274(1):127-32. PubMed ID: 23252907 [TBL] [Abstract][Full Text] [Related]
20. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Engel AG; Sakakibara H; Sahashi K; Lindstrom JM; Lambert EH; Lennon VA Neurology; 1979 Feb; 29(2):179-88. PubMed ID: 571062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]