BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17034582)

  • 1. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice.
    Morgan BP; Chamberlain-Banoub J; Neal JW; Song W; Mizuno M; Harris CL
    Clin Exp Immunol; 2006 Nov; 146(2):294-302. PubMed ID: 17034582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats.
    Chamberlain-Banoub J; Neal JW; Mizuno M; Harris CL; Morgan BP
    Clin Exp Immunol; 2006 Nov; 146(2):278-86. PubMed ID: 17034580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell surface complement regulators moderate experimental myasthenia gravis pathology.
    Kusner LL; Halperin JA; Kaminski HJ
    Muscle Nerve; 2013 Jan; 47(1):33-40. PubMed ID: 23042232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAF/CD55 and Protectin/CD59 modulate adaptive immunity and disease outcome in experimental autoimmune myasthenia gravis.
    Soltys J; Halperin JA; Xuebin Q
    J Neuroimmunol; 2012 Mar; 244(1-2):63-9. PubMed ID: 22325826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.
    Tüzün E; Scott BG; Goluszko E; Higgs S; Christadoss P
    J Immunol; 2003 Oct; 171(7):3847-54. PubMed ID: 14500686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia.
    Kaminski HJ; Kusner LL; Richmonds C; Medof ME; Lin F
    Exp Neurol; 2006 Dec; 202(2):287-93. PubMed ID: 16859686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoregulation in experimental autoimmune myasthenia gravis--about T cells, antibodies, and endplates.
    De Baets M; Stassen M; Losen M; Zhang X; Machiels B
    Ann N Y Acad Sci; 2003 Sep; 998():308-17. PubMed ID: 14592888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myasthenia gravis: the role of complement at the neuromuscular junction.
    Howard JF
    Ann N Y Acad Sci; 2018 Jan; 1412(1):113-128. PubMed ID: 29266249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection.
    Lin F; Kaminski HJ; Conti-Fine BM; Wang W; Richmonds C; Medof ME
    J Clin Invest; 2002 Nov; 110(9):1269-74. PubMed ID: 12417565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complement associated pathogenic mechanisms in myasthenia gravis.
    Tüzün E; Christadoss P
    Autoimmun Rev; 2013 Jul; 12(9):904-11. PubMed ID: 23537510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C5a is not involved in experimental autoimmune myasthenia gravis pathogenesis.
    Qi H; Tüzün E; Allman W; Saini SS; Penabad ZR; Pierangeli S; Christadoss P
    J Neuroimmunol; 2008 May; 196(1-2):101-6. PubMed ID: 18455242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis.
    Martínez-Martínez P; Losen M; Duimel H; Frederik P; Spaans F; Molenaar P; Vincent A; De Baets MH
    Am J Pathol; 2007 Feb; 170(2):644-57. PubMed ID: 17255332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory IgG receptor FcgammaRIIB fails to inhibit experimental autoimmune myasthenia gravis pathogenesis.
    Li J; Tüzün E; Wu XR; Qi HB; Allman W; Saini SS; Christadoss P
    J Neuroimmunol; 2008 Feb; 194(1-2):44-53. PubMed ID: 18207575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
    Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P
    Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respective roles of decay-accelerating factor and CD59 in circumventing glomerular injury in acute nephrotoxic serum nephritis.
    Lin F; Salant DJ; Meyerson H; Emancipator S; Morgan BP; Medof ME
    J Immunol; 2004 Feb; 172(4):2636-42. PubMed ID: 14764738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of complement in experimental autoimmune myasthenia gravis.
    Kusner LL; Kaminski HJ
    Ann N Y Acad Sci; 2012 Dec; 1274(1):127-32. PubMed ID: 23252907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor.
    Engel AG; Sakakibara H; Sahashi K; Lindstrom JM; Lambert EH; Lennon VA
    Neurology; 1979 Feb; 29(2):179-88. PubMed ID: 571062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD59a is the primary regulator of membrane attack complex assembly in the mouse.
    Baalasubramanian S; Harris CL; Donev RM; Mizuno M; Omidvar N; Song WC; Morgan BP
    J Immunol; 2004 Sep; 173(6):3684-92. PubMed ID: 15356114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.