BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17034582)

  • 21. Heterogeneity of Acetylcholine Receptor Autoantibody-Mediated Complement Activity in Patients With Myasthenia Gravis.
    Obaid AH; Zografou C; Vadysirisack DD; Munro-Sheldon B; Fichtner ML; Roy B; Philbrick WM; Bennett JL; Nowak RJ; O'Connor KC
    Neurol Neuroimmunol Neuroinflamm; 2022 Jul; 9(4):. PubMed ID: 35473886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis.
    Kaminski HJ; Li Z; Richmonds C; Lin F; Medof ME
    Exp Neurol; 2004 Oct; 189(2):333-42. PubMed ID: 15380483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The susceptibility to experimental myasthenia gravis of STAT6-/- and STAT4-/- BALB/c mice suggests a pathogenic role of Th1 cells.
    Wang W; Ostlie NS; Conti-Fine BM; Milani M
    J Immunol; 2004 Jan; 172(1):97-103. PubMed ID: 14688314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetylcholine receptors loss and postsynaptic damage in MuSK antibody-positive myasthenia gravis.
    Shiraishi H; Motomura M; Yoshimura T; Fukudome T; Fukuda T; Nakao Y; Tsujihata M; Vincent A; Eguchi K
    Ann Neurol; 2005 Feb; 57(2):289-93. PubMed ID: 15668981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells.
    Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM
    J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Ghosh S; Rowin J; Meriggioli MN; Christadoss P
    Neuromuscul Disord; 2006 Feb; 16(2):137-43. PubMed ID: 16427283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acetylcholine receptor antibody-mediated animal models of myasthenia gravis and the role of complement.
    Kusner LL; Sengupta M; Kaminski HJ
    Ann N Y Acad Sci; 2018 Feb; 1413(1):136-142. PubMed ID: 29356015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel complement inhibitor limits severity of experimentally myasthenia gravis.
    Soltys J; Kusner LL; Young A; Richmonds C; Hatala D; Gong B; Shanmugavel V; Kaminski HJ
    Ann Neurol; 2009 Jan; 65(1):67-75. PubMed ID: 19194881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crry, but not CD59 and DAF, is indispensable for murine erythrocyte protection in vivo from spontaneous complement attack.
    Miwa T; Zhou L; Hilliard B; Molina H; Song WC
    Blood; 2002 May; 99(10):3707-16. PubMed ID: 11986227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new mouse model of autoimmune ocular myasthenia gravis.
    Yang H; Wu B; Tüzün E; Saini SS; Li J; Allman W; Higgs S; Xiao TL; Christadoss P
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5101-11. PubMed ID: 17962462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complement C2 siRNA mediated therapy of myasthenia gravis in mice.
    Huda R; Tüzün E; Christadoss P
    J Autoimmun; 2013 May; 42():94-104. PubMed ID: 23410585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental autoimmune myasthenia gravis in mice expressing human immunoglobulin loci.
    Stassen MH; Meng F; Melgert E; Machiels BM; Im SH; Fuchs S; Gerritsen AF; van Dijk MA; van de Winkel JG; De Baets MH
    J Neuroimmunol; 2003 Feb; 135(1-2):56-61. PubMed ID: 12576224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies.
    Lindstrom JM; Engel AG; Seybold ME; Lennon VA; Lambert EH
    J Exp Med; 1976 Sep; 144(3):739-53. PubMed ID: 182897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myasthenia gravis as a prototype autoimmune receptor disease.
    Hoedemaekers AC; van Breda Vriesman PJ; De Baets MH
    Immunol Res; 1997; 16(4):341-54. PubMed ID: 9439759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myasthenia gravis without acetylcholine-receptor antibody: a distinct disease entity.
    Mossman S; Vincent A; Newsom-Davis J
    Lancet; 1986 Jan; 1(8473):116-9. PubMed ID: 2417076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental autoimmune myasthenia gravis in the mouse.
    Wu B; Goluszko E; Huda R; Tüzün E; Christadoss P
    Curr Protoc Immunol; 2011 Nov; Chapter 15():Unit 15.23. PubMed ID: 22048803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased expression of miR-29 family associated with autoimmune myasthenia gravis.
    Cron MA; Payet CA; Fayet OM; Maillard S; Truffault F; Fadel E; Guihaire J; Berrih-Aknin S; Liston A; Le Panse R
    J Neuroinflammation; 2020 Oct; 17(1):294. PubMed ID: 33032631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations.
    Engel AG; Lambert EH; Howard FM
    Mayo Clin Proc; 1977 May; 52(5):267-80. PubMed ID: 870771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complement activation at the motor end-plates in amyotrophic lateral sclerosis.
    Bahia El Idrissi N; Bosch S; Ramaglia V; Aronica E; Baas F; Troost D
    J Neuroinflammation; 2016 Apr; 13(1):72. PubMed ID: 27056040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades?
    Baggi F; Antozzi C; Toscani C; Cordiglieri C
    Arch Immunol Ther Exp (Warsz); 2012 Feb; 60(1):19-30. PubMed ID: 22159475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.