These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 17034845)

  • 1. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents.
    Stankiewicz JM; Robertson SW; Ritchie RO
    J Biomed Mater Res A; 2007 Jun; 81(3):685-91. PubMed ID: 17187394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube.
    Robertson SW; Ritchie RO
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):26-33. PubMed ID: 17477387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material.
    McKelvey AL; Ritchie RO
    J Biomed Mater Res; 1999 Dec; 47(3):301-8. PubMed ID: 10487880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents.
    Robertson SW; Imbeni V; Wenk HR; Ritchie RO
    J Biomed Mater Res A; 2005 Feb; 72(2):190-9. PubMed ID: 15625682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions.
    Nikanorov A; Smouse HB; Osman K; Bialas M; Shrivastava S; Schwartz LB
    J Vasc Surg; 2008 Aug; 48(2):435-40. PubMed ID: 18486426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.
    Mahtabi MJ; Shamsaei N; Mitchell MR
    J Mech Behav Biomed Mater; 2015 Oct; 50():228-54. PubMed ID: 26160028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing.
    Robertson SW; Launey M; Shelley O; Ong I; Vien L; Senthilnathan K; Saffari P; Schlegel S; Pelton AR
    J Mech Behav Biomed Mater; 2015 Nov; 51():119-31. PubMed ID: 26241890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High compressive pre-strains reduce the bending fatigue life of nitinol wire.
    Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S
    J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue and durability of Nitinol stents.
    Pelton AR; Schroeder V; Mitchell MR; Gong XY; Barney M; Robertson SW
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):153-64. PubMed ID: 19627780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of test protocol variables for dental implant fatigue research.
    Lee CK; Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1419-25. PubMed ID: 19646746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitinol stent design - understanding axial buckling.
    McGrath DJ; O Brien B; Bruzzi M; McHugh PE
    J Mech Behav Biomed Mater; 2014 Dec; 40():252-263. PubMed ID: 25255420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational mechanics of Nitinol stent grafts.
    Kleinstreuer C; Li Z; Basciano CA; Seelecke S; Farber MA
    J Biomech; 2008 Aug; 41(11):2370-8. PubMed ID: 18644312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices.
    Petrini L; Bertini A; Berti F; Pennati G; Migliavacca F
    Proc Inst Mech Eng H; 2017 May; 231(5):391-404. PubMed ID: 28427320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the role of SMA modeling in simulating NiTinol self-expanding stenting surgeries to assess the performance characteristics of mechanical and thermal activation schemes.
    Saleeb AF; Dhakal B; Owusu-Danquah JS
    J Mech Behav Biomed Mater; 2015 Sep; 49():43-60. PubMed ID: 25988791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.