BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 17034942)

  • 1. Occurrence of disinfection by-products in low DOC surface waters in Turkey.
    Ates N; Kaplan SS; Sahinkaya E; Kitis M; Dilek FB; Yetis U
    J Hazard Mater; 2007 Apr; 142(1-2):526-34. PubMed ID: 17034942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of THMs and HAAs in experimental chlorinated waters of the Quebec City area (Canada).
    Sérodes JB; Rodriguez MJ; Li H; Bouchard C
    Chemosphere; 2003 Apr; 51(4):253-63. PubMed ID: 12604077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of chlorination by-products in waters with low SUVA--correlations with SUVA and differential UV spectroscopy.
    Ates N; Kitis M; Yetis U
    Water Res; 2007 Oct; 41(18):4139-48. PubMed ID: 17614116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DPB formation in breakpoint chlorination of wastewater.
    Yang X; Shang C; Huang JC
    Water Res; 2005 Nov; 39(19):4755-4767. PubMed ID: 16288796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of THMs and HAAs in low TOC surface water.
    Kim J
    Environ Res; 2009 Feb; 109(2):158-65. PubMed ID: 19135189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply.
    Uyak V; Toroz I
    J Hazard Mater; 2007 Oct; 149(2):445-51. PubMed ID: 17517472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation and changes of regulated trihalomethanes and haloacetic acids in raw water of Yangtze River, Huangpu River and different treatment processes and pipelines network].
    Chen X; Zhang D; Lu YH; Zheng WW; Wu YX; Wei X; Tian DJ; Wang X; Zhang H; Guo S; Jiang SH; Qu WD
    Zhonghua Yu Fang Yi Xue Za Zhi; 2010 Oct; 44(10):893-8. PubMed ID: 21176519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.
    Pavelic P; Nicholson BC; Dillon PJ; Barry KE
    J Contam Hydrol; 2005 Mar; 77(1-2):119-41. PubMed ID: 15722175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-year survey of organic disinfection by-products in drinking waters of Castilla y León, Spain. The need and difficulty to comply with the legal limit of 2009.
    Garcia-Villanova RJ; Blanca Mera B; González Paramás AM; Hernández Hierro JM; Ardanuy Albajar R; Toruño Fonseca IM
    J Environ Monit; 2010 Jan; 12(1):200-7. PubMed ID: 20082014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of indoor drinking water handling on trihalomethanes and haloacetic acids.
    Levesque S; Rodriguez MJ; Serodes J; Beaulieu C; Proulx F
    Water Res; 2006 Aug; 40(15):2921-30. PubMed ID: 16889815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of various disinfection byproducts in indoor swimming pool waters treated with different disinfection methods.
    Lee J; Jun MJ; Lee MH; Lee MH; Eom SW; Zoh KD
    Int J Hyg Environ Health; 2010 Nov; 213(6):465-74. PubMed ID: 20961810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks.
    Baytak D; Sofuoglu A; Inal F; Sofuoglu SC
    Sci Total Environ; 2008 Dec; 407(1):286-96. PubMed ID: 18805568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disinfection byproduct relationships and speciation in chlorinated nanofiltered waters.
    Chellam S; Krasner SW
    Environ Sci Technol; 2001 Oct; 35(19):3988-99. PubMed ID: 11642467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.
    Serrano M; Montesinos I; Cardador MJ; Silva M; Gallego M
    Sci Total Environ; 2015 Jun; 517():246-58. PubMed ID: 25771439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water.
    Roccaro P; Chang HS; Vagliasindi FG; Korshin GV
    Water Res; 2008 Apr; 42(8-9):1879-88. PubMed ID: 18063005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of disinfection by-products in indoor swimming pool water: the contribution from filling water natural organic matter and swimmer body fluids.
    Kanan A; Karanfil T
    Water Res; 2011 Jan; 45(2):926-32. PubMed ID: 20934199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.