These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 17035229)
1. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. Wrighton KH; Willis D; Long J; Liu F; Lin X; Feng XH J Biol Chem; 2006 Dec; 281(50):38365-75. PubMed ID: 17035229 [TBL] [Abstract][Full Text] [Related]
2. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. Sapkota G; Knockaert M; Alarcón C; Montalvo E; Brivanlou AH; Massagué J J Biol Chem; 2006 Dec; 281(52):40412-9. PubMed ID: 17085434 [TBL] [Abstract][Full Text] [Related]
3. The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling. Liang J; Zhou Y; Zhang N; Wang D; Cheng X; Li K; Huang R; Lu Y; Wang H; Han D; Wu W; Han M; Miao S; Wang L; Zhao H; Song W J Biol Chem; 2021; 296():100512. PubMed ID: 33676893 [TBL] [Abstract][Full Text] [Related]
4. Osteoarthritis-Related Inflammation Blocks TGF-β's Protective Effect on Chondrocyte Hypertrophy via (de)Phosphorylation of the SMAD2/3 Linker Region. Thielen N; Neefjes M; Wiegertjes R; van den Akker G; Vitters E; van Beuningen H; Blaney Davidson E; Koenders M; van Lent P; van de Loo F; van Caam A; van der Kraan P Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360888 [TBL] [Abstract][Full Text] [Related]
5. Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway. Bu S; Kapanadze B; Hsu T; Trojanowska M J Biol Chem; 2008 Jul; 283(28):19593-602. PubMed ID: 18482992 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Yang F; Chung AC; Huang XR; Lan HY Hypertension; 2009 Oct; 54(4):877-84. PubMed ID: 19667256 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Bourgeois B; Gilquin B; Tellier-Lebègue C; Östlund C; Wu W; Pérez J; El Hage P; Lallemand F; Worman HJ; Zinn-Justin S Sci Signal; 2013 Jun; 6(280):ra49. PubMed ID: 23779087 [TBL] [Abstract][Full Text] [Related]
8. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Matsuzaki K; Kitano C; Murata M; Sekimoto G; Yoshida K; Uemura Y; Seki T; Taketani S; Fujisawa J; Okazaki K Cancer Res; 2009 Jul; 69(13):5321-30. PubMed ID: 19531654 [TBL] [Abstract][Full Text] [Related]
9. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins. Nakano A; Koinuma D; Miyazawa K; Uchida T; Saitoh M; Kawabata M; Hanai J; Akiyama H; Abe M; Miyazono K; Matsumoto T; Imamura T J Biol Chem; 2009 Mar; 284(10):6109-15. PubMed ID: 19122240 [TBL] [Abstract][Full Text] [Related]
10. Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2. Song K; Cornelius SC; Reiss M; Danielpour D J Biol Chem; 2003 Oct; 278(40):38342-51. PubMed ID: 12876289 [TBL] [Abstract][Full Text] [Related]
11. Pin1 promotes transforming growth factor-beta-induced migration and invasion. Matsuura I; Chiang KN; Lai CY; He D; Wang G; Ramkumar R; Uchida T; Ryo A; Lu K; Liu F J Biol Chem; 2010 Jan; 285(3):1754-64. PubMed ID: 19920136 [TBL] [Abstract][Full Text] [Related]
12. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Mori S; Matsuzaki K; Yoshida K; Furukawa F; Tahashi Y; Yamagata H; Sekimoto G; Seki T; Matsui H; Nishizawa M; Fujisawa J; Okazaki K Oncogene; 2004 Sep; 23(44):7416-29. PubMed ID: 15326485 [TBL] [Abstract][Full Text] [Related]
13. Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3 at linker regions in vivo and in vitro. Wu C; Chen W; Ding H; Li D; Wen G; Zhang C; Lu W; Chen M; Yang Y Life Sci; 2019 Dec; 239():116881. PubMed ID: 31678285 [TBL] [Abstract][Full Text] [Related]
15. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Lin X; Duan X; Liang YY; Su Y; Wrighton KH; Long J; Hu M; Davis CM; Wang J; Brunicardi FC; Shi Y; Chen YG; Meng A; Feng XH Cell; 2006 Jun; 125(5):915-28. PubMed ID: 16751101 [TBL] [Abstract][Full Text] [Related]
16. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Poncelet AC; de Caestecker MP; Schnaper HW Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488 [TBL] [Abstract][Full Text] [Related]
17. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors. Miyazono KI; Moriwaki S; Ito T; Kurisaki A; Asashima M; Tanokura M Sci Signal; 2018 Mar; 11(523):. PubMed ID: 29588413 [TBL] [Abstract][Full Text] [Related]
18. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Kamato D; Burch ML; Piva TJ; Rezaei HB; Rostam MA; Xu S; Zheng W; Little PJ; Osman N Cell Signal; 2013 Oct; 25(10):2017-24. PubMed ID: 23770288 [TBL] [Abstract][Full Text] [Related]
19. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Furukawa F; Matsuzaki K; Mori S; Tahashi Y; Yoshida K; Sugano Y; Yamagata H; Matsushita M; Seki T; Inagaki Y; Nishizawa M; Fujisawa J; Inoue K Hepatology; 2003 Oct; 38(4):879-89. PubMed ID: 14512875 [TBL] [Abstract][Full Text] [Related]
20. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Yoshida K; Matsuzaki K; Mori S; Tahashi Y; Yamagata H; Furukawa F; Seki T; Nishizawa M; Fujisawa J; Okazaki K Am J Pathol; 2005 Apr; 166(4):1029-39. PubMed ID: 15793284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]