These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 17035323)

  • 1. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system.
    Sitati EM; Diamond MS
    J Virol; 2006 Dec; 80(24):12060-9. PubMed ID: 17035323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis.
    Sitati E; McCandless EE; Klein RS; Diamond MS
    J Virol; 2007 Sep; 81(18):9801-11. PubMed ID: 17626103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Tissue-Specific CD8
    Aguilar-Valenzuela R; Netland J; Seo YJ; Bevan MJ; Grakoui A; Suthar MS
    J Virol; 2018 May; 92(10):. PubMed ID: 29514902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.
    Gorman MJ; Poddar S; Farzan M; Diamond MS
    J Virol; 2016 Sep; 90(18):8212-25. PubMed ID: 27384652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system.
    Lazear HM; Pinto AK; Ramos HJ; Vick SC; Shrestha B; Suthar MS; Gale M; Diamond MS
    J Virol; 2013 Nov; 87(21):11401-15. PubMed ID: 23966390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system.
    Durrant DM; Daniels BP; Pasieka T; Dorsey D; Klein RS
    J Neuroinflammation; 2015 Dec; 12():233. PubMed ID: 26667390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STING is required for host defense against neuropathological West Nile virus infection.
    McGuckin Wuertz K; Treuting PM; Hemann EA; Esser-Nobis K; Snyder AG; Graham JB; Daniels BP; Wilkins C; Snyder JM; Voss KM; Oberst A; Lund J; Gale M
    PLoS Pathog; 2019 Aug; 15(8):e1007899. PubMed ID: 31415679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemokine Receptor Ccr7 Restricts Fatal West Nile Virus Encephalitis.
    Bardina SV; Brown JA; Michlmayr D; Hoffman KW; Sum J; Pletnev AG; Lira SA; Lim JK
    J Virol; 2017 May; 91(10):. PubMed ID: 28356527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons.
    Shrestha B; Pinto AK; Green S; Bosch I; Diamond MS
    J Virol; 2012 Sep; 86(17):8937-48. PubMed ID: 22740407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection.
    Thackray LB; Shrestha B; Richner JM; Miner JJ; Pinto AK; Lazear HM; Gale M; Diamond MS
    J Virol; 2014 Oct; 88(19):11007-21. PubMed ID: 25031348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes.
    Graham JB; Thomas S; Swarts J; McMillan AA; Ferris MT; Suthar MS; Treuting PM; Ireton R; Gale M; Lund JM
    mBio; 2015 May; 6(3):e00493-15. PubMed ID: 25944860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical role for induced IgM in the protection against West Nile virus infection.
    Diamond MS; Sitati EM; Friend LD; Higgs S; Shrestha B; Engle M
    J Exp Med; 2003 Dec; 198(12):1853-62. PubMed ID: 14662909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunoglobulin G avidity in differentiation between early and late antibody responses to West Nile virus.
    Fox JL; Hazell SL; Tobler LH; Busch MP
    Clin Vaccine Immunol; 2006 Jan; 13(1):33-6. PubMed ID: 16425997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD22 is required for protection against West Nile virus Infection.
    Ma DY; Suthar MS; Kasahara S; Gale M; Clark EA
    J Virol; 2013 Mar; 87(6):3361-75. PubMed ID: 23302871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system.
    Shrestha B; Zhang B; Purtha WE; Klein RS; Diamond MS
    J Virol; 2008 Sep; 82(18):8956-64. PubMed ID: 18632856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAVS Is Essential for Primary CD4
    Luo H; Winkelmann E; Xie G; Fang R; Peng BH; Li L; Lazear HM; Paessler S; Diamond MS; Gale M; Barrett AD; Wang T
    J Virol; 2017 Mar; 91(6):. PubMed ID: 28077630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of virus-specific immune responses in the central nervous system of mice after West Nile virus infection.
    Stewart BS; Demarest VL; Wong SJ; Green S; Bernard KA
    BMC Immunol; 2011 Jan; 12():6. PubMed ID: 21251256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection.
    Glass WG; Lim JK; Cholera R; Pletnev AG; Gao JL; Murphy PM
    J Exp Med; 2005 Oct; 202(8):1087-98. PubMed ID: 16230476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective immune responses against West Nile virus are primed by distinct complement activation pathways.
    Mehlhop E; Diamond MS
    J Exp Med; 2006 May; 203(5):1371-81. PubMed ID: 16651386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors.
    Prince HE; Tobler LH; Lapé-Nixon M; Foster GA; Stramer SL; Busch MP
    J Clin Microbiol; 2005 Sep; 43(9):4316-20. PubMed ID: 16145071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.