BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 17035526)

  • 21. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulations of dendritic Ca
    Yi G; Wei X; Wang J; Deng B; Che Y
    Neural Netw; 2019 Feb; 110():8-18. PubMed ID: 30471543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active dendrites, potassium channels and synaptic plasticity.
    Johnston D; Christie BR; Frick A; Gray R; Hoffman DA; Schexnayder LK; Watanabe S; Yuan LL
    Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):667-74. PubMed ID: 12740112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavioral Timescale Cooperativity and Competitive Synaptic Interactions Regulate the Induction of Complex Spike Burst-Dependent Long-Term Potentiation.
    O'Dell TJ
    J Neurosci; 2022 Mar; 42(13):2647-2661. PubMed ID: 35135856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons.
    Sjöström PJ; Häusser M
    Neuron; 2006 Jul; 51(2):227-38. PubMed ID: 16846857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons.
    Groen MR; Paulsen O; Pérez-Garci E; Nevian T; Wortel J; Dekker MP; Mansvelder HD; van Ooyen A; Meredith RM
    J Neurophysiol; 2014 Jul; 112(2):287-99. PubMed ID: 24760781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction mechanisms and modulation of bidirectional burst stimulation-induced synaptic plasticity in the hippocampus.
    Clark K; Normann C
    Eur J Neurosci; 2008 Jul; 28(2):279-87. PubMed ID: 18702699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Associative spike timing-dependent potentiation of the basal dendritic excitatory synapses in the hippocampus in vivo.
    Fung TK; Law CS; Leung LS
    J Neurophysiol; 2016 Jun; 115(6):3264-74. PubMed ID: 27052581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spike timing-dependent plasticity: from synapse to perception.
    Dan Y; Poo MM
    Physiol Rev; 2006 Jul; 86(3):1033-48. PubMed ID: 16816145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons.
    Birtoli B; Ulrich D
    J Neurosci; 2004 May; 24(21):4935-40. PubMed ID: 15163685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptic democracy in active dendrites.
    Rumsey CC; Abbott LF
    J Neurophysiol; 2006 Nov; 96(5):2307-18. PubMed ID: 16837665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
    Andreasen M; Lambert JD
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):441-62. PubMed ID: 9518704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dendritic small conductance calcium-activated potassium channels activated by action potentials suppress EPSPs and gate spike-timing dependent synaptic plasticity.
    Jones SL; To MS; Stuart GJ
    Elife; 2017 Oct; 6():. PubMed ID: 29058675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spine Ca2+ signaling in spike-timing-dependent plasticity.
    Nevian T; Sakmann B
    J Neurosci; 2006 Oct; 26(43):11001-13. PubMed ID: 17065442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model.
    Saudargiene A; Porr B; Wörgötter F
    Neural Comput; 2004 Mar; 16(3):595-625. PubMed ID: 15006093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The stochastic nature of action potential backpropagation in apical tuft dendrites.
    Short SM; Oikonomou KD; Zhou WL; Acker CD; Popovic MA; Zecevic D; Antic SD
    J Neurophysiol; 2017 Aug; 118(2):1394-1414. PubMed ID: 28566465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synaptic efficacy cluster formation across the dendrite via STDP.
    Iannella N; Tanaka S
    Neurosci Lett; 2006 Jul; 403(1-2):24-9. PubMed ID: 16762502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.