These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17035542)

  • 1. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning.
    Cai LL; Fong AJ; Otoshi CK; Liang Y; Burdick JW; Roy RR; Edgerton VR
    J Neurosci; 2006 Oct; 26(41):10564-8. PubMed ID: 17035542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why variability facilitates spinal learning.
    Ziegler MD; Zhong H; Roy RR; Edgerton VR
    J Neurosci; 2010 Aug; 30(32):10720-6. PubMed ID: 20702702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord-transected mice learn to step in response to quipazine treatment and robotic training.
    Fong AJ; Cai LL; Otoshi CK; Reinkensmeyer DJ; Burdick JW; Roy RR; Edgerton VR
    J Neurosci; 2005 Dec; 25(50):11738-47. PubMed ID: 16354932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of robotic-assisted treadmill training and chronic quipazine treatment on hindlimb stepping in spinally transected rats.
    de Leon RD; Acosta CN
    J Neurotrauma; 2006 Jul; 23(7):1147-63. PubMed ID: 16866627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic assistance that encourages the generation of stepping rather than fully assisting movements is best for learning to step in spinally contused rats.
    Lee C; Won D; Cantoria MJ; Hamlin M; de Leon RD
    J Neurophysiol; 2011 Jun; 105(6):2764-71. PubMed ID: 21430272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.
    de Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1998 Mar; 79(3):1329-40. PubMed ID: 9497414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.
    Hinahon E; Estrada C; Tong L; Won DS; de Leon RD
    Neurorehabil Neural Repair; 2017 Aug; 31(8):746-757. PubMed ID: 28741434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study.
    Lam T; Pauhl K; Ferguson A; Malik RN; ; Krassioukov A; Eng JJ
    J Rehabil Res Dev; 2015; 52(1):113-29. PubMed ID: 26230667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.
    Oza CS; Giszter SF
    J Neurosci; 2015 May; 35(18):7174-89. PubMed ID: 25948267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training.
    Cha J; Heng C; Reinkensmeyer DJ; Roy RR; Edgerton VR; De Leon RD
    J Neurotrauma; 2007 Jun; 24(6):1000-12. PubMed ID: 17600516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic training and spinal cord plasticity.
    Edgerton VR; Roy RR
    Brain Res Bull; 2009 Jan; 78(1):4-12. PubMed ID: 19010399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hindlimb loading determines stepping quantity and quality following spinal cord transection.
    Timoszyk WK; Nessler JA; Acosta C; Roy RR; Edgerton VR; Reinkensmeyer DJ; de Leon R
    Brain Res; 2005 Jul; 1050(1-2):180-9. PubMed ID: 15979592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rat lumbosacral spinal cord adapts to robotic loading applied during stance.
    Timoszyk WK; De Leon RD; London N; Roy RR; Edgerton VR; Reinkensmeyer DJ
    J Neurophysiol; 2002 Dec; 88(6):3108-17. PubMed ID: 12466434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates.
    See PA; de Leon RD
    J Neurophysiol; 2013 Aug; 110(3):760-7. PubMed ID: 23678012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can the mammalian lumbar spinal cord learn a motor task?
    Hodgson JA; Roy RR; de Leon R; Dobkin B; Edgerton VR
    Med Sci Sports Exerc; 1994 Dec; 26(12):1491-7. PubMed ID: 7869884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report.
    Chisholm AE; Alamro RA; Williams AM; Lam T
    J Neuroeng Rehabil; 2017 Apr; 14(1):27. PubMed ID: 28399877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two chronic motor training paradigms differentially influence acute instrumental learning in spinally transected rats.
    Bigbee AJ; Crown ED; Ferguson AR; Roy RR; Tillakaratne NJ; Grau JW; Edgerton VR
    Behav Brain Res; 2007 Jun; 180(1):95-101. PubMed ID: 17434606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial.
    Gorman PH; Scott W; York H; Theyagaraj M; Price-Miller N; McQuaid J; Eyvazzadeh M; Ivey FM; Macko RF
    J Spinal Cord Med; 2016; 39(1):32-44. PubMed ID: 25520035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.