BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17035629)

  • 1. Bypassing the catalytic activity of SIR2 for SIR protein spreading in Saccharomyces cerevisiae.
    Yang B; Kirchmaier AL
    Mol Biol Cell; 2006 Dec; 17(12):5287-97. PubMed ID: 17035629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae.
    Yang B; Britton J; Kirchmaier AL
    J Mol Biol; 2008 Sep; 381(4):826-44. PubMed ID: 18619469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing.
    Chou CC; Li YC; Gartenberg MR
    Mol Cell; 2008 Sep; 31(5):650-9. PubMed ID: 18775325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae.
    Garcia SN; Pillus L
    Genetics; 2002 Oct; 162(2):721-36. PubMed ID: 12399383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae.
    Yu Q; Elizondo S; Bi X
    J Mol Biol; 2006 Mar; 356(5):1082-92. PubMed ID: 16406069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity.
    Armstrong CM; Kaeberlein M; Imai SI; Guarente L
    Mol Biol Cell; 2002 Apr; 13(4):1427-38. PubMed ID: 11950950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locus specificity determinants in the multifunctional yeast silencing protein Sir2.
    Cuperus G; Shafaatian R; Shore D
    EMBO J; 2000 Jun; 19(11):2641-51. PubMed ID: 10835361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae.
    Rusché LN; Kirchmaier AL; Rine J
    Mol Biol Cell; 2002 Jul; 13(7):2207-22. PubMed ID: 12134062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conserved core of a human SIR2 homologue functions in yeast silencing.
    Sherman JM; Stone EM; Freeman-Cook LL; Brachmann CB; Boeke JD; Pillus L
    Mol Biol Cell; 1999 Sep; 10(9):3045-59. PubMed ID: 10473645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation.
    Liou GG; Tanny JC; Kruger RG; Walz T; Moazed D
    Cell; 2005 May; 121(4):515-527. PubMed ID: 15907466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading of Sir3 protein in cells with severe histone H3 hypoacetylation.
    Kristjuhan A; Wittschieben BO; Walker J; Roberts D; Cairns BR; Svejstrup JQ
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7551-6. PubMed ID: 12796514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing.
    Huang S; Zhou H; Tarara J; Zhang Z
    EMBO J; 2007 May; 26(9):2274-83. PubMed ID: 17410207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication.
    Pappas DL; Frisch R; Weinreich M
    Genes Dev; 2004 Apr; 18(7):769-81. PubMed ID: 15082529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of a gene-specific repressor to a regional silencer.
    Rusché LN; Rine J
    Genes Dev; 2001 Apr; 15(8):955-67. PubMed ID: 11316790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast.
    Xu F; Zhang Q; Zhang K; Xie W; Grunstein M
    Mol Cell; 2007 Sep; 27(6):890-900. PubMed ID: 17889663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae.
    Cockell MM; Perrod S; Gasser SM
    Genetics; 2000 Mar; 154(3):1069-83. PubMed ID: 10757754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.
    Thurtle-Schmidt DM; Dodson AE; Rine J
    Genetics; 2016 Sep; 204(1):177-90. PubMed ID: 27489001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae.
    Hickman MA; Rusche LN
    PLoS Genet; 2007 Aug; 3(8):e126. PubMed ID: 17676954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin.
    Suka N; Luo K; Grunstein M
    Nat Genet; 2002 Nov; 32(3):378-83. PubMed ID: 12379856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.