These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 17037958)

  • 1. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data.
    Wang L; Mettu RR; Donald BR
    J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An algebraic geometry approach to protein structure determination from NMR data.
    Wang L; Mettu RR; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient and accurate algorithm for assigning nuclear overhauser effect restraints using a rotamer library ensemble and residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():189-202. PubMed ID: 16447976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns.
    Zeng J; Tripathy C; Zhou P; Donald BR
    Comput Syst Bioinformatics Conf; 2008; 7():169-81. PubMed ID: 19642278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein loop closure using orientational restraints from NMR data.
    Tripathy C; Zeng J; Zhou P; Donald BR
    Proteins; 2012 Feb; 80(2):433-53. PubMed ID: 22161780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REDCRAFT: A computational platform using residual dipolar coupling NMR data for determining structures of perdeuterated proteins in solution.
    Cole CA; Daigham NS; Liu G; Montelione GT; Valafar H
    PLoS Comput Biol; 2021 Feb; 17(2):e1008060. PubMed ID: 33524015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination.
    Khoo Y; Singer A; Cowburn D
    J Biomol NMR; 2017 Jul; 68(3):163-185. PubMed ID: 28616711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints.
    Giesen AW; Homans SW; Brown JM
    J Biomol NMR; 2003 Jan; 25(1):63-71. PubMed ID: 12567000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo determination of protein backbone structure from residual dipolar couplings using Rosetta.
    Rohl CA; Baker D
    J Am Chem Soc; 2002 Mar; 124(11):2723-9. PubMed ID: 11890823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data.
    Pristovsek P; Franzoni L
    J Comput Chem; 2006 Apr; 27(6):791-7. PubMed ID: 16526035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments.
    Kuszewski J; Schwieters CD; Garrett DS; Byrd RA; Tjandra N; Clore GM
    J Am Chem Soc; 2004 May; 126(20):6258-73. PubMed ID: 15149223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure.
    Wang L; Donald BR
    J Biomol NMR; 2004 Jul; 29(3):223-42. PubMed ID: 15213422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.
    Kamisetty H; Bailey-Kellogg C; Pandurangan G
    Bioinformatics; 2006 Jan; 22(2):172-80. PubMed ID: 16287932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BCL::Fold--protein topology determination from limited NMR restraints.
    Weiner BE; Alexander N; Akin LR; Woetzel N; Karakas M; Meiler J
    Proteins; 2014 Apr; 82(4):587-95. PubMed ID: 24123100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down approach in protein RDC data analysis: de novo estimation of the alignment tensor.
    Chen K; Tjandra N
    J Biomol NMR; 2007 Aug; 38(4):303-13. PubMed ID: 17593526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():319-30. PubMed ID: 16448025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
    van Dijk AD; Fushman D; Bonvin AM
    Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy.
    Clore GM; Robien MA; Gronenborn AM
    J Mol Biol; 1993 May; 231(1):82-102. PubMed ID: 8496968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.