These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 17037962)

  • 1. On the similarity of sets of permutations and its applications to genome comparison.
    Bergeron A; Stoye J
    J Comput Biol; 2006 Sep; 13(7):1340-54. PubMed ID: 17037962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Genome Similarity Measures based on Conserved Gene Adjacencies.
    Doerr D; Kowada LAB; Araujo E; Deshpande S; Dantas S; Moret BME; Stoye J
    J Comput Biol; 2017 Jun; 24(6):616-634. PubMed ID: 28590847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colored de Bruijn graphs and the genome halving problem.
    Alekseyev MA; Pevzner PA
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):98-107. PubMed ID: 17277417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfect sorting by reversals is not always difficult.
    Bérard S; Bergeron A; Chauve C; Paul C
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):4-16. PubMed ID: 17277409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A statistically fair comparison of ancestral genome reconstructions, based on breakpoint and rearrangement distances.
    Adam Z; Sankoff D
    J Comput Biol; 2010 Sep; 17(9):1299-314. PubMed ID: 20874410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDoP Distance Between Sets of Incomplete Permutations: Application to Bacteria Classification Based on Gene Order.
    Zhou X; Amir A; Guerra C; Landau G; Rossignac J
    J Comput Biol; 2018 Nov; 25(11):1193-1202. PubMed ID: 30113868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the algebraic formalism for genome rearrangements to include linear chromosomes.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorting permutations by fragmentation-weighted operations.
    Alexandrino AO; Lintzmayer CN; Dias Z
    J Bioinform Comput Biol; 2020 Apr; 18(2):2050006. PubMed ID: 32326802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. webMGR: an online tool for the multiple genome rearrangement problem.
    Lin CH; Zhao H; Lowcay SH; Shahab A; Bourque G
    Bioinformatics; 2010 Feb; 26(3):408-10. PubMed ID: 20022974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Complexity of Sorting by Reversals and Transpositions Problems.
    Oliveira AR; Brito KL; Dias U; Dias Z
    J Comput Biol; 2019 Nov; 26(11):1223-1229. PubMed ID: 31120331
    [No Abstract]   [Full Text] [Related]  

  • 11. Multichromosomal median and halving problems under different genomic distances.
    Tannier E; Zheng C; Sankoff D
    BMC Bioinformatics; 2009 Apr; 10():120. PubMed ID: 19386099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easy identification of generalized common and conserved nested intervals.
    de Montgolfier F; Raffinot M; Rusu I
    J Comput Biol; 2014 Jul; 21(7):520-33. PubMed ID: 24650221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of genomic distance between random genomes.
    Sankoff D; Haque L
    J Comput Biol; 2006 Jun; 13(5):1005-12. PubMed ID: 16796547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorting by reversals and block-interchanges with various weight assignments.
    Lin YC; Lin CY; Lin CR
    BMC Bioinformatics; 2009 Dec; 10():398. PubMed ID: 19958558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNAPping up functionally related genes based on context information: a colinearity-free approach.
    Kolesov G; Mewes HW; Frishman D
    J Mol Biol; 2001 Aug; 311(4):639-56. PubMed ID: 11518521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes.
    Alekseyev MA
    J Comput Biol; 2008 Oct; 15(8):1117-31. PubMed ID: 18788907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm to enumerate sorting reversals for signed permutations.
    Siepel AC
    J Comput Biol; 2003; 10(3-4):575-97. PubMed ID: 12935346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorting Signed Permutations by Inverse Tandem Duplication Random Losses.
    Hartmann T; Bannach M; Middendorf M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2177-2188. PubMed ID: 31095495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rearrangement models and single-cut operations.
    Bergeron A; Medvedev P; Stoye J
    J Comput Biol; 2010 Sep; 17(9):1213-25. PubMed ID: 20874405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing genomes with duplications: a computational complexity point of view.
    Blin G; Chauve C; Fertin G; Rizzi R; Vialette S
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):523-34. PubMed ID: 17975264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.