BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

719 related articles for article (PubMed ID: 17038189)

  • 1. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes.
    Jiang Y; Deyholos MK
    BMC Plant Biol; 2006 Oct; 6():25. PubMed ID: 17038189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress.
    Yang L; Jin Y; Huang W; Sun Q; Liu F; Huang X
    BMC Genomics; 2018 Sep; 19(1):717. PubMed ID: 30261913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana.
    Krishnaswamy SS; Srivastava S; Mohammadi M; Rahman MH; Deyholos MK; Kav NN
    BMC Plant Biol; 2008 Sep; 8():91. PubMed ID: 18783601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response.
    Yokoi S; Quintero FJ; Cubero B; Ruiz MT; Bressan RA; Hasegawa PM; Pardo JM
    Plant J; 2002 Jun; 30(5):529-39. PubMed ID: 12047628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress.
    Jiang Y; Yang B; Deyholos MK
    Mol Genet Genomics; 2009 Nov; 282(5):503-16. PubMed ID: 19760256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots.
    Jiang Y; Yang B; Harris NS; Deyholos MK
    J Exp Bot; 2007; 58(13):3591-607. PubMed ID: 17916636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis.
    Lildballe DL; Pedersen DS; Kalamajka R; Emmersen J; Houben A; Grasser KD
    J Mol Biol; 2008 Dec; 384(1):9-21. PubMed ID: 18822296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana.
    Kumari M; Taylor GJ; Deyholos MK
    Mol Genet Genomics; 2008 Apr; 279(4):339-57. PubMed ID: 18270741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice.
    Jain M; Khurana JP
    FEBS J; 2009 Jun; 276(11):3148-62. PubMed ID: 19490115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation.
    Popova OV; Yang O; Dietz KJ; Golldack D
    Gene; 2008 Nov; 423(2):142-8. PubMed ID: 18703123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential responses of maize MIP genes to salt stress and ABA.
    Zhu C; Schraut D; Hartung W; Schäffner AR
    J Exp Bot; 2005 Nov; 56(421):2971-81. PubMed ID: 16216844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana.
    Gao Y; Badejo AA; Sawa Y; Ishikawa T
    Plant Cell Physiol; 2012 Mar; 53(3):592-601. PubMed ID: 22323769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR; Huebner M; Weber AP
    BMC Genomics; 2007 May; 8():125. PubMed ID: 17519032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses.
    Jiang Y; Deyholos MK
    Plant Mol Biol; 2009 Jan; 69(1-2):91-105. PubMed ID: 18839316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcript profiling of the salt-tolerant Festuca rubra ssp. litoralis reveals a regulatory network controlling salt acclimatization.
    Diédhiou CJ; Popova OV; Golldack D
    J Plant Physiol; 2009 May; 166(7):697-711. PubMed ID: 19106017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray.
    Taji T; Seki M; Satou M; Sakurai T; Kobayashi M; Ishiyama K; Narusaka Y; Narusaka M; Zhu JK; Shinozaki K
    Plant Physiol; 2004 Jul; 135(3):1697-709. PubMed ID: 15247402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
    Czechowski T; Stitt M; Altmann T; Udvardi MK; Scheible WR
    Plant Physiol; 2005 Sep; 139(1):5-17. PubMed ID: 16166256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A central integrator of transcription networks in plant stress and energy signalling.
    Baena-González E; Rolland F; Thevelein JM; Sheen J
    Nature; 2007 Aug; 448(7156):938-42. PubMed ID: 17671505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana.
    Kobayashi Y; Sadhukhan A; Tazib T; Nakano Y; Kusunoki K; Kamara M; Chaffai R; Iuchi S; Sahoo L; Kobayashi M; Hoekenga OA; Koyama H
    Plant Cell Environ; 2016 Apr; 39(4):918-34. PubMed ID: 26667381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane.
    Carnavale Bottino M; Rosario S; Grativol C; Thiebaut F; Rojas CA; Farrineli L; Hemerly AS; Ferreira PC
    PLoS One; 2013; 8(3):e59423. PubMed ID: 23544066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.