BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17038336)

  • 1. The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA).
    Huang YY; Deng JY; Gu J; Zhang ZP; Maxwell A; Bi LJ; Chen YY; Zhou YF; Yu ZN; Zhang XE
    Nucleic Acids Res; 2006; 34(19):5650-9. PubMed ID: 17038336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Ca²⁺ in the activity of Mycobacterium tuberculosis DNA gyrase.
    Karkare S; Yousafzai F; Mitchenall LA; Maxwell A
    Nucleic Acids Res; 2012 Oct; 40(19):9774-87. PubMed ID: 22844097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis DNA gyrase possesses two functional GyrA-boxes.
    Bouige A; Darmon A; Piton J; Roue M; Petrella S; Capton E; Forterre P; Aubry A; Mayer C
    Biochem J; 2013 Nov; 455(3):285-94. PubMed ID: 23869946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twisting of the DNA-binding surface by a beta-strand-bearing proline modulates DNA gyrase activity.
    Hsieh TJ; Yen TJ; Lin TS; Chang HT; Huang SY; Hsu CH; Farh L; Chan NL
    Nucleic Acids Res; 2010 Jul; 38(12):4173-81. PubMed ID: 20215433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "GyrA-box" is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction.
    Kramlinger VM; Hiasa H
    J Biol Chem; 2006 Feb; 281(6):3738-42. PubMed ID: 16332690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle.
    Lanz MA; Klostermeier D
    Nucleic Acids Res; 2012 Nov; 40(21):10893-903. PubMed ID: 22977179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A superhelical spiral in the Escherichia coli DNA gyrase A C-terminal domain imparts unidirectional supercoiling bias.
    Ruthenburg AJ; Graybosch DM; Huetsch JC; Verdine GL
    J Biol Chem; 2005 Jul; 280(28):26177-84. PubMed ID: 15897198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis in the alpha3alpha4 GyrA helix and in the Toprim domain of GyrB refines the contribution of Mycobacterium tuberculosis DNA gyrase to intrinsic resistance to quinolones.
    Matrat S; Aubry A; Mayer C; Jarlier V; Cambau E
    Antimicrob Agents Chemother; 2008 Aug; 52(8):2909-14. PubMed ID: 18426901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs.
    Tretter EM; Lerman JC; Berger JM
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22055-9. PubMed ID: 21076033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18636-44. PubMed ID: 22457353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: II. The shape of the GyrA subunit C-terminal domain (CTD) is not a sole determinant for controlling supercoiling efficiency.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18645-54. PubMed ID: 22457352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interactions between gyrase subunits are optimized in a species-specific manner.
    Weidlich D; Klostermeier D
    J Biol Chem; 2020 Feb; 295(8):2299-2312. PubMed ID: 31953321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal Propagation in the ATPase Domain of
    Kamsri B; Kamsri P; Punkvang A; Chimprasit A; Saparpakorn P; Hannongbua S; Spencer J; Oliveira ASF; Mulholland AJ; Pungpo P
    Biochemistry; 2024 Jun; 63(11):1493-1504. PubMed ID: 38742407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of four GyrA residues involved in the DNA breakage-reunion reaction of DNA gyrase.
    Hockings SC; Maxwell A
    J Mol Biol; 2002 Apr; 318(2):351-9. PubMed ID: 12051842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the E540V amino acid substitution in GyrB of Mycobacterium tuberculosis on quinolone resistance.
    Kim H; Nakajima C; Yokoyama K; Rahim Z; Kim YU; Oguri H; Suzuki Y
    Antimicrob Agents Chemother; 2011 Aug; 55(8):3661-7. PubMed ID: 21646485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overall Structures of Mycobacterium tuberculosis DNA Gyrase Reveal the Role of a Corynebacteriales GyrB-Specific Insert in ATPase Activity.
    Petrella S; Capton E; Raynal B; Giffard C; Thureau A; Bonneté F; Alzari PM; Aubry A; Mayer C
    Structure; 2019 Apr; 27(4):579-589.e5. PubMed ID: 30744994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance.
    Gross CH; Parsons JD; Grossman TH; Charifson PS; Bellon S; Jernee J; Dwyer M; Chambers SP; Markland W; Botfield M; Raybuck SA
    Antimicrob Agents Chemother; 2003 Mar; 47(3):1037-46. PubMed ID: 12604539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity.
    Aubry A; Pan XS; Fisher LM; Jarlier V; Cambau E
    Antimicrob Agents Chemother; 2004 Apr; 48(4):1281-8. PubMed ID: 15047530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monoclonal antibody that inhibits mycobacterial DNA gyrase by a novel mechanism.
    Manjunatha UH; Maxwell A; Nagaraja V
    Nucleic Acids Res; 2005; 33(10):3085-94. PubMed ID: 15930158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.