These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 17038504)

  • 1. Characterization of the nanoscale properties of individual amyloid fibrils.
    Smith JF; Knowles TP; Dobson CM; Macphee CE; Welland ME
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15806-11. PubMed ID: 17038504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation.
    Guo S; Akhremitchev BB
    Biomacromolecules; 2006 May; 7(5):1630-6. PubMed ID: 16677048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins.
    Knowles TP; Oppenheim TW; Buell AK; Chirgadze DY; Welland ME
    Nat Nanotechnol; 2010 Mar; 5(3):204-7. PubMed ID: 20190750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of amyloid-like fibrils defined by secondary structures.
    Bortolini C; Jones NC; Hoffmann SV; Wang C; Besenbacher F; Dong M
    Nanoscale; 2015 May; 7(17):7745-52. PubMed ID: 25839069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties.
    Malisauskas M; Weise C; Yanamandra K; Wolf-Watz M; Morozova-Roche L
    J Mol Biol; 2010 Feb; 396(1):60-74. PubMed ID: 19913026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images.
    Adamcik J; Jung JM; Flakowski J; De Los Rios P; Dietler G; Mezzenga R
    Nat Nanotechnol; 2010 Jun; 5(6):423-8. PubMed ID: 20383125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of natural biopolymers on amyloid fibril formation and morphology.
    Ow SY; Bekard I; Dunstan DE
    Int J Biol Macromol; 2018 Jan; 106():30-38. PubMed ID: 28778524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of the growth, evolution, and self-aggregation of β-amyloid fibrils using tapping-mode atomic force microscopy.
    Serem WK; Bett CK; Ngunjiri JN; Garno JC
    Microsc Res Tech; 2011 Jul; 74(7):699-708. PubMed ID: 21698718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic self-assembly of insulin monomers into amyloid fibrils on a solid surface.
    Lee JS; Um E; Park JK; Park CB
    Langmuir; 2008 Jul; 24(14):7068-71. PubMed ID: 18549255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of alpha-synuclein fibrils in nanoscale studied by peptide truncation and AFM.
    Zhang F; Lin XJ; Ji LN; Du HN; Tang L; He JH; Hu J; Hu HY
    Biochem Biophys Res Commun; 2008 Apr; 368(2):388-94. PubMed ID: 18230346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-directed self-assembly and growth of insulin amyloid fibrils.
    Ha C; Park CB
    Biotechnol Bioeng; 2005 Jun; 90(7):848-55. PubMed ID: 15803463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon.
    Dong M; Hovgaard MB; Mamdouh W; Xu S; Otzen DE; Besenbacher F
    Nanotechnology; 2008 Sep; 19(38):384013. PubMed ID: 21832572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy.
    S Mostaert A; Crockett R; Kearn G; Cherny I; Gazit E; C Serpell L; P Jarvis S
    Arch Histol Cytol; 2009; 72(4-5):199-207. PubMed ID: 21471654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers.
    Morris RJ; Eden K; Yarwood R; Jourdain L; Allen RJ; Macphee CE
    Nat Commun; 2013; 4():1891. PubMed ID: 23695685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalised amyloid fibrils for roles in cell adhesion.
    Gras SL; Tickler AK; Squires AM; Devlin GL; Horton MA; Dobson CM; MacPhee CE
    Biomaterials; 2008 Apr; 29(11):1553-62. PubMed ID: 18164758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of mechanical properties of insulin crystals by atomic force microscopy.
    Guo S; Akhremitchev BB
    Langmuir; 2008 Feb; 24(3):880-7. PubMed ID: 18163652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.